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Compass in the data ocean: Toward chronotherapy
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In the globalized modern society, the world is contin-
uously moving 24 h a day 7 d a week. Prominent cities
on the earth can be seen brightly lit at night from outer
space. People on earth have daily (circadian) rhythms
based more on their social circumstances than on
natural cycles of day and night. This discrepancy of
rhythms poses new challenges to our bodies that have
never been met in evolutionary history. The circadian
clock system regulates various aspects of physiology.
Even a healthy person may suffer once internal
rhythms break from environmental ones. The mis-
alignment happens, for example, when a person
travels on an airplane across many time zones (jet
lag), when a person oversleeps on the weekend and
wakes up early to go to work on Monday (social jet
lag), or when a person works during the night or early
morning with an intermittent or rotating schedule
(shiftwork). Several reports have shown that internal
body time varies by 5–6 h in healthy humans (1) and by
as much as 10–12 h in shift workers (2). Accumulating
evidence suggests that those misalignments may be a
link to health risks, including obesity (3) and psychiatric
disorders (4). Also, the severity of some diseases may
be affected by the time of day, and some drugs are
known to have different potency or toxicity depend-
ing on their administration time. The advancement
achieved in the past two decades in the field of circa-
dian biology has revealed that the core of the mamma-
lian circadian clock is composed of about 20 transcription
factors (5). Recently, a research group reported that a
majority of mammalian genes are under the clock regu-
lation, and that markedly different genes show circadian
oscillation in each tissue (6). Importantly, they reported
that a substantial number of top-selling drugs in the
United States have circadian targets (6). Based on those
findings, a convenient and precise molecular measure-
ment of tissue molecular time is needed. The report
published in PNAS by Anafi et al. (7) from the same re-
search group strives to achieve this precise molecular
measurement of tissue molecular time.

The conventional method tomonitor body time is to
take blood samples periodically over 24 h, measuring
the level of hormones such as melatonin or cortisol,

which have robust circadian oscillation in the blood
(1, 8). However, this method ignores the underlying
molecular machinery and differences between organs.
A straightforward approach to address this problem is
to perform time series sampling from each organ. How-
ever, subjecting people to tissue biopsies with a con-
stant time interval for a couple of days is a huge burden
on the people and is impractical. Choosing an easily
accessible tissue such as hair follicles can reduce the
burden, but this approach precludes investigation of
internal organs. Another way is to develop a molecular
timetable method that can estimate internal body time
with just one or a few samples (9).
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Fig. 1. Simplified numerical representation of Linné’s
flower clock. A hypothetical flower A is represented with
red petals, and flower B is represented with blue petals
around a 24-h clock. The openness of flowers is indicated
as −1 (closed), 0 (half-open), or 1 (open). The 2D vectors
that contain elements of flower openness are displayed
below the corresponding flowers. The two thick black
arrows form a basis of the plane, and any arbitrary vector
of flower openness locates on the unit circle on the
plane. A thin black vector is depicted as an example, and
its phase (the time of day) is recapitulated as the angle
between the axis and the vector (double arc). The yellow
and black bands around the clock represent the day and
night times of a day. In an actual situation, the dimension
of the vector will be the number of biological molecules
used in the analysis, or the number of nodes in the
previous layer of the neural network.
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The molecular timetable method was inspired by the Linné’s
flower clock, which is a conceptual clock named after Carl von
Linné, the father of modern taxonomy. In the 18th century, Linné
realized that several flowers open or close at a particular time of
day, and proposed a list of flowers so that the combination of the
flowers indicates the time of day. By substituting the flowers with
good time-indicating molecules, we can construct a molecular
timetable with which to infer internal body time. Molecules can
be, but are not limited to, mRNA (9–12), metabolites (13–15), and
protein (16). The fundamental step of the method is to find good
time-indicatingmolecules. Because good time-indicatingmolecules
are oscillatory with the circadian period, analytical techniques de-
veloped for searching for oscillatory molecules can be used, includ-
ing the Pearson correlation between variation of molecular levels
and the sinusoidal curve (9, 13, 14, 16), a nonparametric correlation
test such as JTK_CYCLE (17), and singular value decomposition or
its relatives (18, 19). However, the notable caveat of those analysis
techniques is that the experiment should be well designed and
controlled with the intention of detecting oscillatory molecules.
Therefore, those analysis tools usually require a set of new exper-
iments when the subject changes. The recently emerging machine
learning approaches maymitigate this problem by training a model
that can be applied to datasets taken from different organs (20).
However, samples with known circadian time are required for the
training. As Anafi et al. (7) point out, the Gene Expression Omnibus,
a public gene expression database maintained by the National
Center for Biotechnology Information, has a collection of more than
1 million human gene expression data, but most data lack the
sampling time information. Hence, they embarked on a challenge
to develop a method that could make use of the large-scale data by
developing an unsupervised learning method, CYCLOPS (CYCLic
Ordering by Periodic Structure).

First, they focused on genes that were detected as oscillatory
in the mouse in the previous study (6). Then, they relied on a
mathematical concept of oscillation. The basic concept they used
in the work can be envisaged with the metaphor of Linné’s flower
clock. For simplicity, let us assume we have two imaginary flowers
A and B, and that (i) “flower A” opens at 0600 hours and closes at
1800 hours, (ii) “flower B” opens at 0000 hours (midnight) and
closes at 1200 hours (noon), and (iii) flowers A and B open or close
gradually; that is, flower A is half-open at midnight and noon, and
flower B is half-open at 0600 and 1800 hours (Fig. 1). Notice that it
would be difficult to know the time of day by looking at just flower
A or just flower B under this assumption. For example, when you
see that flower A is half-open, you may need to sit for hours to see
if it is opening (midnight) or closing (noon); that is, you need time
series observation. Instead, by looking at both flowers, you would
be able to know immediately that it is noon if flower B is also open.
If you havemore flowers with different opening or closing times, the

clock becomes more precise. This simple setting can show another
interesting property of oscillation. When the degree of openness of
a flower is numerically represented (e.g., 1 for open, −1 for closed,
0 for half-open), we can form two vectors for time-indicating flow-
ers. Each vector contains elements representing the openness at a
different time of day (Fig. 1). It should be noted that two orthogonal
vectors form a plane on which vectors of arbitrary time of day dis-
tribute on the unit circle. The angle between the vector and an axis

The results of Anafi et al. may spark the dawn
of the “Age of Discovery” in the data ocean of
public databases, manifesting CYCLOPS as a
useful compass to enhance the translation of
knowledge in circadian biology to medicine.

indicates the time of day of the vector. This observation also holds
when the vector is n-dimensional; that is, there are n > 2 flowers in
a vector. This property of oscillation means that the openness of n
time-indicating flowers at an arbitrary time of day can be encoded
in a circle on 2D space. So, the problem of finding time-indicating
molecules (flowers) can be rephrased as “What selection of mol-
ecules can make a plane on which projected vectors form a circle,
or more generally, an ellipse?” Anafi et al. (6) addressed this
problem by using unsupervised machine learning, where a neural
network model was optimized so that the gene expression profiles
were efficiently encoded on an ellipse on a plane. Because their
method is an unsupervised approach, it was expected to work
with datasets of unknown sampling time. Indeed, they success-
fully demonstrated that their method could detect aberrant cir-
cadian function in human hepatocellular carcinoma samples that
were originally sampled without the intention of circadian analy-
sis. Furthermore, they confirmed the circadian expression of a
glucose transporter gene in human liver samples. In addition,
based on this finding, they succeeded in providing a proof of
concept, where the toxicity of a drug that interferes with the
transporter could be reduced by controlling administration tim-
ing. The results of Anafi et al. may spark the dawn of the “Age of
Discovery” in the data ocean of public databases, manifesting
CYCLOPS as a useful compass to enhance the translation of
knowledge in circadian biology to medicine.
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