
Available online at www.sciencedirect.com

Challenges in synthetically designing mammalian circadian
clocks
Etsuo A Susaki1,3, Jörg Stelling4,5 and Hiroki R Ueda1,2,6,7
Synthetic biology, in which complex, dynamic biological

systems are designed or reconstructed from basic biological

components, can help elucidate the design principles of such

systems. However, this engineering approach has only been

applied to a few simple biological systems. The circadian clock

is appropriate for this approach, since it is a dynamic system

with complex transcriptional and post-transcriptional circuits

that have been comprehensively described. Rational synthesis

of the properties of the suprachiasmatic nucleus, the central

clock tissue of the circadian system that controls many

dynamic behaviors, will be important for understanding the

neural-circuit systems that control physiological behaviors.

These approaches will provide a deeper understanding of the

biological clock, and of clinical problems associated with it,

such as sleep disorders.
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The recent demands for integrating large-scale datasets to

reach a deeper understanding of living systems has set the

stage for the advent of systems and synthetic biology

[1,2��]. Complex and dynamic biological phenomena,

such as the circadian clock, are suitable subjects for these

newly emerging approaches [2��], in which developing

an understanding of a system is a four-step process:
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identification, analysis, control, and design of the system

of interest. The components and their networks sufficient

to the function of the system are confirmed in the final

step, design, in which the original system is reconstructed

from scratch, using rationally synthesized biological com-

ponents, pathways, and networks. Here, we use the

mammalian circadian system as an example to discuss

how this synthetic approach can be applied to gain a

comprehensive understanding of the systems. In engin-

eering and therapeutic scenarios, this approach can help

manufacture precise and timely interventions of the

intracellular or intercellular regulatory mechanisms and

rational reprogramming of cell/tissue phenotypes of the

circadian clock, which will be of growing importance

particularly in medical applications.

Overview of the mammalian circadian clock
and application of synthetic biology
The circadian clock is an evolutionarily conserved mol-

ecular biological timing system. Its underlying mechan-

isms consist of intracellular auto-regulatory feedback

loops in which specific proteins called clock proteins rhyth-

mically activate or repress each other [2��,3��,4��,5�,6��].
Circadian clocks in multi-cellular organisms are organized

as a hierarchy of circadian oscillators. Peripheral circadian

clock cells are widely distributed in a variety of tissues

throughout the body [2��,3��,4��,5�,6��,7�]. One central

clock tissue located in the suprachiasmatic nucleus (SCN)

of the anterior hypothalamus regulates the circadian

rhythms of these peripheral clock cells in mammals. More

specifically, the SCN orchestrates these circadian

rhythms according to external cues, including light

[3��,4��,6��]. The circadian clocks in central and periph-

eral tissues are intimately involved in the regulation of

metabolic and physiologic processes. Impairment of the

circadian clock is associated with numerous diseases,

including sleep disorders, depression, cancer, and demen-

tia [2��,3��].

Synthetic approaches to understanding mammalian cir-

cadian clocks can be divided into synthesis of a molecular
clock, and synthesis of the central clock. The first involves

the rational design of minimal artificial transcriptional

and post-transcriptional networks, often these are (sim-

plified) replicas of the original structure and function that

is shared by central and peripheral clock cells. The

second application involves a rational design of the

properties of the SCN, the central clock tissue. This

requires implementing the signal transduction network,

electrophysiological network, and intercellular circuits of
www.sciencedirect.com
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the SCN (e.g., gating, electrophysiological oscillations,

and coupling) in non-SCN cells.

Transcriptional networks of mammalian
circadian rhythms
The circadian system in multi-cellular organisms has well-

defined dynamic properties, including: first, endogenous

oscillations with an approximately 24-h period; second,

entrainment to external environmental changes (tempera-

ture and light cycles) and third, temperature compensation

over a wide range of temperatures. In mammalian

clocks, circadian transcriptional oscillations are governed,

at least in part, by transcriptional programs that rely on

at least three clock-controlled cis-elements (CCEs): morn-

ing (E-box/E0-box, CACGT[G/T]), day-time (D-box,
Figure 1

Overview of the transcriptional network of the mammalian circadian clock. G

repression are depicted as ovals, rectangles, gray lines, green lines, and or

directly or indirectly controlled by at least 11 transcription factors. These inc

Clock, Npas2, Bmal1 (also known as Arntl or Mop3), and Bmal2; three Period

Cry1 and Cry2; and two other bHLH transcription factors, Bhlhb2 and Bhlhb

Hlf, Tef and E4bp4 (also known as Nfil3), and five orphan nuclear hormone re

and Rorc, control the D-box- and RRE-mediated transcription programs, re
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TTA[T/C]GTAA), and night-time (RevErbA/ROR bind-

ing element or RRE [A/T]A[A/T]NT[A/G]GGTCA)

elements [2��,3��]. Many molecules controlling the circa-

dian transcription program via the three CCEs have been

reported, as described in Figure 1.

The E-box-mediated transcriptional program is critical in

the core auto-regulatory loop of the mammalian circadian

clock [2��,3��,5�,7�]. According to a current clock model,

bHLH-PAS transcription activators such as BMAL1 and

CLOCK form heterodimers that bind to E-box/E0-box cis-
elements present in the promoter regions of their target

genes, which include the Per and Cry1 genes. In turn, the

CRYs and PERs induced by the BMAL1/CLOCK het-

erodimers form repressor complexes; these physically
enes, CCEs, transcriptional/translational expression, activation, and

ange lines, respectively. The E-box-mediated transcription program is

lude four basic helix–loop–helix (bHLH)-PAS transcription activators,

genes, Per1, Per2, and Per3; two Cryptochrome transcription repressors,

3 (also known as Dec1 and Dec2). At least four bZIP-family genes, Dbp,

ceptors, Nr1d1, Nr1d2 (also known as RevErbAa, RevErbAb), Rora, Rorb

spectively.
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Figure 2

Synthetic clock outputs with a natural wiring mechanism. (a) Ukai-Tadenuma and colleagues developed an artificial in vitro transcriptional cycling

assay system in mouse NIH3T3 cells to determine whether cis-elementary transcriptional regulations via the three main CCEs (the E/E0-box

(morning), the D-box (day-time), and the RRE (night-time)) are sufficient to create clock outputs. This system was composed of an artificial activator

(destabilized GAL4 fused to VP16 transcriptional activator; dGAL4-VP16) and an artificial repressor (destabilized GAL4; dGAL4), which were

expressed under the control of either of CCEs (3 � CCE) and regulate the expression of destabilized luciferase (dLuc) reporter gene via competitive

binding to its upstream activator sequences (four tandem repeats of the GAL4-binding sequence; 4 � UAS) fused with a minimal CMV promoter

(CMV mini). Using the assay system, the investigators reconstructed a natural circadian output, (b), day-time in this example, using a morning

activator and night-time repressor as suggested from previous information. They also successfully designed an unnatural, artificial circadian output

with various combinations of these CCEs with the transcriptional regulators, (c), early day-time in this example, using a morning activator and day-

time repressor.

Current Opinion in Biotechnology 2010, 21:556–565 www.sciencedirect.com
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associate with the BMAL1/CLOCK heterodimers to

inhibit E-box-mediated transcription [2��,3��,5�,7�].
However, the mechanisms behind the circuit’s dynamic

properties remain largely elusive.

Reconstruction and design of circadian
transcriptional networks
Simple regulatory modules, such as positive and negative

feedback loops, can generate complex dynamic beha-

viors, alone or when they are embedded in larger network

structures. Theoretically, a specific type of gene regulat-

ory network can display a particular dynamic behavior,

such as toggle switching, logic gating, or oscillations [8].

Recent work in synthetic biology focuses on forward

engineering gene regulatory networks similar to those

observed in known biological networks, and proving the

natural circuits’ design principles by synthesis (‘proof-by-

synthesis’). The first step in designing a network structure

with specific dynamic behavior is often in silico modeling;

this is followed by an experimental implementation of the

designed molecular network in cellulo.

Several studies have attempted to design and implement

purely artificial networks of de novo wiring to generate

systems exhibiting oscillatory behavior, a characteristic

dynamic behavior in the circadian system, by using a

repressilator transcriptional network [9�], coupled positive

and negative feedback transcriptional loops [10–
12,13�14�], or a transcriptional- and metabolic-integrated

network loop [15]. A study by Elowitz and colleagues was

one of the earliest synthetic approach in which they

designed and implemented the by now ‘classical’ repres-

silator gene circuit into Escherichia coli [9�]. Later, more

robust — and tunable — oscillation systems were achieved

in mammalian cells [12] as well as in E. coli [11,14�].

A challenge of the reconstruction or design of a circadian

oscillator with a relatively long period (nearly 24 h) and

stable amplitudes has not yet been accomplished.

Recently, Tigges and colleagues successfully generated

an artificial transcriptional network with an oscillatory

period of about 26 h, but with fragile oscillations [13�].
Another attempt is to use the natural components of the

circadian clock, which was performed by Chilov and

colleagues [16�]. They tried to reconstruct a feedback

loop of the natural circadian oscillatory network, com-

posed by inducibly expressed Bmal1/CROCK gene plus

E/E0-box-connected Per/Cry gene and/or a reporter gene.

The system performed at least a single cycle of a clock-

like oscillation, but sustained oscillatory expression of the

reporter gene was not observed. Thus, it appears difficult

to artificially reproduce periodic dynamic behavior with a

sustainability and relatively long period (nearly 24 h). An

alternative approach to build a stable circadian oscillator is

to utilize wiring information in a natural circadian tran-

scriptional network [17��]. They succeeded to recon-

struct, at least in part, sub-network of mammalian
www.sciencedirect.com
circadian clocks, and found that the phases of the tran-

scriptional activator(s) and repressor(s) of the circadian

clock can determine the downstream transcriptional

output phase, by using an in vitro cycling assay system

composed of an artificial activator and repressor, of which

expression timings were controlled via either of CCEs,

and an output reporter gene regulated by the activator

and repressor (Figure 2a). The artificial transcriptional

circuits successfully reproduced the natural circadian

output and they generated other unnatural phases by

various combinations of these CCEs with the transcrip-

tional regulators (Figure 2b,c). However, they could not

regenerate the morning phase. Taken together, the chal-

lenges of synthesizing a ‘perfect’ natural circadian clock

remain to be solved, as we work toward the complete

reconstruction of the transcriptional circuits underlying

the mammalian circadian clock.

We also note that synthetic-biological approaches can be

applied to other dynamic properties of circadian clocks

such as circadian output’s amplitude, temperature com-

pensation and time delay. For example, artificial CCEs

were synthesized followed by their implementation into

cells [18�]. Among the synthetically designed CCE

sequences, there were cis-elements with very high- or

low-amplitude circadian transcriptional activity. High-

amplitude oscillations required an appropriate affinity

balance between the activators and the repressors. Thus,

novel design principles and underlying mechanisms were

discovered by the synthetic approach. In addition,

temperature compensation of the molecular clock is

another target of the synthetic-biological study, although

it seems necessary to design temperature-insensitive

enzyme [19]. Other synthetic approaches tried to create

time-delay circuits with feed-forward loops or multistep

reactions [20–22]. Such time-delay circuits can be an

important control motif in both circadian clock and other

signaling pathways in nature. Overall, these proof-by-

synthesis approaches with natural circadian components

serve a dual purpose; they can investigate sufficiency of

identified natural components and/or their interactions,

and also reveal requirement of previously unidentified

components or interactions.

Design and implementation of dynamic
properties of the central clock tissue
The circadian clock adjusts an organism’s metabolic and

physiological activities to the environmental day–night

cycle of the earth. In mammals, organism-level circadian

rhythmicity is critically regulated by one central pace-

maker, located in the SCN of the hypothalamus

[3��,4��,6��]. The central clock tissue is of particular in-

terest, because it regulates many cyclic metabolic and

physiologic processes, such as the sleep–wake cycle.

Thus, reconstruction of the dynamic properties of the

SCN will be among the next applications of synthetic

approaches for the mammalian circadian clock.
Current Opinion in Biotechnology 2010, 21:556–565
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Figure 3

A synthetic approach toward creating the gating property of the SCN. (a) A phase-dependent sensitivity to external stimuli such as light is one of the

fundamental properties of the circadian clock. Photic information from the retina is delivered through glutamate and PACAP of the RHT. VIP is also

proposed as an intrinsic SCN factor mediating the photic signaling. These neurotransmitters bind to the receptors expressed at the surface of SCN

cells and activate intracellular signaling pathways. The signaling pathways may be regulated by the circadian rhythm to display phase-dependent

sensitivity to the extracellular signals. In fact, the photic signal transduction system selectively delivers the information of light only at night and it

entrains the circadian clock. (b) In a synthetic approach, researchers may be able to implement a designed transcriptional circuit composed of the

signaling molecules regulated by CCEs into a non-SCN cell type (e.g., fibroblast) to execute the property of the phase-dependent resetting of circadian

clock by external stimuli.
One of the fundamental dynamic properties of the central

circadian clock is gating, a phase-dependent response to

external stimuli. For example, exposure to light during

subjective night-time, but not during subjective day-
Current Opinion in Biotechnology 2010, 21:556–565
time, can effectively entrain the central circadian clock

[3��] (Figure 3a). In the photic response program, gluta-

mate and pituitary adenylate cyclase activating peptide

(PACAP) in the retinohypothalamic tract (RHT) are
www.sciencedirect.com
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thought to be the main neurotransmitters that deliver

photic information to the SCN; they convey critical

information for photic entrainment [4��,5�,6��,23��]. More

specifically, glutamate binds and activates the NMDA

receptors of SCN neurons and it induces intracellular

calcium-dependent signaling pathways, which in turn

upregulate Per1 and Per2 in the SCN cells

[3��,4��,6��,23��] (Figure 3a). PACAP binds to G-protein

coupled receptors (PAC1-receptor and VPAC2) of SCN

cells [23��] (Figure 3a). Intrinsic neurochemical signaling

among the SCN neurons, mediated by vasoactive intes-

tinal polypeptide (VIP) and its receptor VPAC2, has also

been proposed as an important factor in the photic

entrainment of the mammalian clock [23��,24]

(Figure 3a). Mathematical models of photic entrainment

can help predict the efficiency of multiple control targets

and their combinations for circadian phase resetting, as

studied by Bagheri and colleagues [25].

These extracellular stimuli activate several intracellular

signaling molecules. It is not clear how the gating process

is implemented in the signal transduction pathways

associated with these components; however, several of

these proposed factors, including Ryr2 mRNA, phos-

phorylated MAPK, cGMP levels, and PGK activity, have

been reported to exhibit oscillatory behaviors

[3��,4��,23��,26–28], and the oscillation of these mol-

ecules along with the circadian rhythm can prompt cells

to exhibit gating of the photic response. Again, synthetic

cyclic transcriptional regulation of these signal transduc-

tion pathways may provide insight into the underlying

molecular mechanisms for gating in the SCN neurons.

Electrophysiological oscillations are another fundamental

dynamic property of the SCN. A single SCN neuron can

express circadian rhythmicity in its electrophysiological

activity [4��,6��,7�,23��,29]. Recent studies provide evi-

dence that electrophysiological oscillation in harmony

with the circadian rhythm does indeed regulate changes

in such physiological functions as the osmosensory reac-

tion during late sleep [30]. Both experimental analyses

and mathematical modeling suggest that this rhythmicity

is partly mediated by several kinds of Ca+ or K+ channels,

including L-type voltage-dependent Ca2+ channels, fast-

delayed rectifier K+ channels (Kv3.1b and Kv3.2), or a

Ca2+-activated Bk channel (Kcnma1) [23��,29,31�,32�].

Intriguingly, the electrophysiological oscillations are

associated with daily expression changes of these chan-

nels, such as the fast-delayed rectifier K+ channels (high

in day-time) and the Bk channel (high in night-time)

[23��,31�,32�]. Mutations in circadian clock genes —

including a Tau mutation in casein kinase I epsilon or

a dominant negative mutation of the Clock gene — change

the SCN’s electrophysiological rhythms in mice [29]. A

recent report suggested that the Per1 gene is involved in

some electrophysiological features within SCN cells
www.sciencedirect.com
[33�], further supporting the direct interactions between

the clock gene network and electrophysiological com-

ponents. However, the exact nature of the interactions

remains elusive. Synthetic design and implementation of

cyclic electrophysiological activity in non-SCN cells may

help reveal the sufficient minimal components required

for cyclic electrical outputs from the SCN neurons.

A third fundamental property of SCN neurons is their

ability of synchronized oscillations—they form a coupled

oscillator at the tissue level against inevitable noise. More

specifically, the SCN consists of �20,000 neurons and

their circadian activity is unequivocally synchronized

[2��,6��]. Synchronization is indispensable to the SCN

function as a central pacemaker as was revealed through

the study of the singularity phenomenon [34�]. Further-

more, the SCN derived from several clock gene knock-

out mice showed sustained circadian oscillation although

these clock genes were required for the circadian oscil-

lation at a single-cell levels, suggesting compensation of

the circadian behavior by the coupling [35�]. An impair-

ment in the intercellular communication among the SCN

cells results in desynchronization and arrhythmicity

[36,37].

What are the underlying mechanism(s) for synchroniza-

tion? Our understanding of collective synchronization in

coupled non-linear oscillators has been derived mainly by

studying simplified phase models such as the Kuramoto

model [38�]. More realistic subsequent theoretical studies

have refined the picture [39–44,45�]. For example, math-

ematical modeling of the intercellular coupling of noise-

resistant circadian oscillators highlighted the importance

of oscillatory factor(s) that are secreted at a specific

circadian time and can induce light- or dark-pulse-type

phase shifts in neighboring cells [43]. More recently,

Bernard and colleagues developed a realistic model that

comprises a heterogenous set of damped cellular oscil-

lators and a coupling agent. Connectivity was simulated in

the three-dimensional in vivo SCN or two-dimensional

sliced SCN with separate core and shell compartment of

the tissue [45�]. This model emphasized the importance

of population size, number of oscillators, and connectivity

for the synchronization. Besides the SCN, to understand

the basic principle of synchronized oscillatory behavior at

the population level, Danino and colleagues recently

developed an engineered gene network that enable syn-

chronized oscillations in a growing population of E. coli
[14�], and highlighted the importance of a small secretory

molecule and an appropriate cell density as well. Similar

principles may also establish synchronization in the SCN,

given that SCN cells are packed into a small region of the

hypothalamus with intercellular connectivity [23��].
Regarding specific biological mechanisms, for instance,

the VIP-VPAC2 signaling pathway is thought to mediate

intercellular communication among the SCN neurons

[6��,37,46]. These signaling pathways thus may provide
Current Opinion in Biotechnology 2010, 21:556–565
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Figure 4

Synthetic approach toward designing electrophysiological oscillation and coupling in the SCN. SCN cells exhibit characteristics such as oscillatory

electrophysiological activity and synchronized circadian oscillations (coupling), which are critical for SCN function as a central pacemaker.

Researchers may incorporate a designed transcriptional circuit regulated by CCEs, and composed of (a) ion channels or their modifiers or (b) secretory

molecules and their receptors, into a non-SCN cell type (e.g., fibroblast) to create the desired properties of an oscillated electrical activity or

intercellular coupling.

Current Opinion in Biotechnology 2010, 21:556–565 www.sciencedirect.com
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first targets for future synthetic approaches to reveal the

underlying molecular mechanisms of synchronization

among SCN neurons.

Taken together, we propose that a key to designing SCN

function is to use and modify the mechanisms described

above to generate designed outputs from the SCN

(Figures 3 and 4). A possible synthetic approach is to

implement these oscillatory networks in cells and re-

produce the desired property. This is analogous to the

study of proof-by synthesis of circadian phase where a

designed transcriptional network in which the gene

expression is regulated by CCEs, and thus regulated

along with the circadian rhythm, is incorporated into cells

[17��] (Figures 3 and 4). Observing whether the desired

property is executed properly will help indicate the

sufficiency of the system. These synthetic approaches

at the individual network level will help to elucidate the

relationship between the circadian clock and other net-

works in the brain that function to regulate various

behavioral outputs such as the sleep–wake cycle.

Conclusions
The integration of systems and synthetic approaches will

play a critical role in improving our understanding of

dynamic physiological functions and help in the design

of systems that show desired properties. We discussed this

approach in the specific context of the circadian rhythms.

Application of the synthetic approach to studies of the

mammalian circadian rhythm will enhance not only this

challenging research field, but for clinical medicine as well.

In particular, people nowadays usually have to live in the

artificial environment without the natural day–night cycle

on the earth. Furthermore, recent social and medical

problems such as aging of the human population, a part

of which are accompanied by circadian rhythm disorders, is

a key concern worldwide. Thus, the synthetic approach

may become one of the best model cases that can inform

biological engineering, with a potential for the analysis and

treatment of many diseases.
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