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The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a
sequential phosphorylation–dephosphorylation cycle of KaiC protein, inwhich the dynamics
of protein structural changes driven by temperature-compensated KaiC’s ATPase activity are
critical for determining the period. On the other hand, circadian clocks in eukaryotes employ
transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein
accumulation and degradation affect the circadian period. However, recent studies of eu-
karyotic circadian clocks reveal that the mechanism controlling the circadian period can be
independent of the regulation of protein abundance. Instead, the circadian substrate is often
phosphorylated at multiple sites at flexible protein regions to induce structural changes. The
phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation
such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the
design principles of phosphorylation-dependent circadian-period determination in eukary-
otes may share characteristics with the posttranslational oscillator in cyanobacteria.

The circadian clock produces near-24-h
rhythms in physiological activities. From

multicellular animals to plants, circadian clocks
regulate cellular metabolic pathways and other
physiological responses of the organism, such as
sleep–wake cycles and immune responses (Levi
and Schibler 2007; Bass and Takahashi 2010;
Mohawk et al. 2012; Albrecht 2013; Greenham
and McClung 2015; Lu et al. 2017; Sanchez and
Kay 2017). The evolutionary advantage of a cir-
cadian clock was demonstrated by coculture ex-
periments with prokaryotic cyanobacteria, in

which strains with a circadian period matching
the light–dark cycle of their environment be-
came dominant in the population (Woelfle
et al. 2004). This advantage should apply to
many species; circadian rhythmicity of physio-
logical activities is observed in evolutionarily
distant species. Conserved features of the mo-
lecular mechanisms that drive circadian clocks
in different phyla have been revealed through
studies in a variety of organisms, including con-
ventional models such as rodents in mammals,
Drosophila melanogaster in insects, Arabidopsis
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thaliana in higher plants, Neurospora crassa in
fungi, and Synechococcus elongatus in cyano-
bacteria. In all organisms, circadian rhyth-
micity is cell-autonomous. Even in mammals,
various cell types show robust circadian rhyth-
micity in gene expression and physiological ac-
tivity, even when cultured in vitro (Welsh et al.
1995; Yagita et al. 2001; Nagoshi et al. 2004;
Yoo et al. 2004). Cell-autonomous circadian
oscillation is produced by the system-level or-
chestration of transcription–translation feed-
back and/or a posttranslational interaction net-
work (Gallego and Virshup 2007; Ukai and
Ueda 2010; Millius and Ueda 2017), but the
molecular components of the oscillators espe-
cially for transcriptional or translational regu-
lators differ between species (Rosbash 2009;
Brown et al. 2012; van Ooijen and Millar
2012; Takahashi 2017). However, the question
arises whether a common design principle un-
derlies the molecular components of circadian
clocks in different organisms.

In most organisms, circadian molecular os-
cillators seem to be based on transcription–
translation feedback loops (TTFLs). However,
how circadian clocks maintain a robust 24-h
oscillation is a mystery. The suprachiasmatic
nucleus, a region of the brain central to circadi-
an rhythm in mammals, can sustain oscillating
gene expression for years when cultured in vitro
(Yamazaki and Takahashi 2005). However, the
periodic gene expression in artificial biological
oscillators encoded as TTFLs is less stable when
subjected to cell-intrinsic or cell-extrinsic
changes (Elowitz and Leibler 2000; Danino
et al. 2010). This observation suggests that an
additional layer exists in the period-keeping
mechanism of circadian cellular oscillators.
Here, we review the circadian-clock features in
various organisms from the perspective of
TTFL-based design principles and posttransla-
tional modifications of oscillator components.
Through the comparison between a phosphor-
ylation-based oscillator in cyanobacteria and
multisite phosphorylation of clock components
that can regulate the circadian period in eukary-
otes, we propose that shared design principles
can be found in the circadian period-determi-
nation mechanisms.

TRANSCRIPTION NEGATIVE FEEDBACK IN
EUKARYOTIC CIRCADIAN OSCILLATORS

Figure 1 summarizes the major molecular com-
ponents of circadian oscillators in different phy-
la. Eukaryote oscillators have conserved negative
feedback loops in the transcription–translation
network (Fig. 1A). The PERIOD protein (PER)
is a key transcriptional repressor in mammals
and Drosophila. PER binds and inhibits a basic
helix–loop–helix transcription-activator com-
plex consisting of CLOCK and BMAL1 inmam-
mals (Fig. 1B). In Drosophila, PER inhibits a
complex of CLOCK (CLK) and CYCLE (CYC),
a BMAL1 ortholog (Fig. 1C). The CLOCK–
BMAL1 (CLK-CYC in Drosophila) complex ac-
tivates Per transcription; thus, the overall tran-
scription network creates a negative feedback
loop. PERbinds other partners in various organ-
isms to act on transcription activators. In Dro-
sophila, PER represses its own transcription by
binding TIMELESS (TIM), the vertebrate ho-
molog of which maintains chromosomal integ-
rity (Chou and Elledge 2006; Tanaka et al. 2009).
In contrast, mammalian PER forms a complex
with CRYPTOCHROME (CRY). The crypto-
chrome superfamily is widely conserved from
bacteria to plants, but nonmammalian crypto-
chrome functions as a blue-light receptor rather
than as a circadian transcription repressor (Lin
and Todo 2005; Ozturk et al. 2007). Phylogenet-
ically, the closest homolog of mammalian cryp-
tochrome is 6–4 photolyase, which catalyzes the
repair of damaged DNA residues using energy
from blue light. These functional divergence of
TIM and CRY in maintaining DNA integrity
and circadian rhythmicity may be related to
the evolutionarily close relationship of DNA-
damage responses and circadian clocks in an
environment with daily oscillations in sunlight.

The molecular components of circadian
negative feedback loops differ between fungi
and plants. White Collar complex (WCC) and
FREQUENCY (FRQ) are the primary drivers of
Neurospora circadian clocks (Fig. 1D).WCC ac-
tivates FRQ transcription, which in turn inhibits
WCC and creates the negative feedback loop.
The canonical core feedback architecture of
the circadian clock in plants is more complex
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(Fig. 1E). In Arabidopsis, the canonical model
involves transcription feedback loops around
two transcription repressors, CCA1 and LHY,
which suppress the transcription of both activa-
tors and inhibitors of CCA1/LHY expression,
creating an architecture combining positive
and negative feedback.

Theoretical studies emphasize the impor-
tance of a negative feedback loop encoded as a
TTFL in autonomous oscillation (Novak and
Tyson 2008; Kim 2016). In a general sense, the

period of TTFL-based oscillators is determined
through the dynamics of protein quantity: the
repression phase is initiated by the accumula-
tion of transcription repressor(s) and ceases
when the repressors have disappeared. Indeed,
the circadian period is reported to be regulated
through the delayed timing (phase) of the accu-
mulation of mammalian transcriptional repres-
sor Cry messenger RNA (mRNA) (Ukai-Tade-
numa et al. 2011) or Per mRNA in mammals
andDrosophila (Kadener et al. 2008; Fustin et al.
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Figure 1. Shared structure of transcription–translation feedback loop (TTFL)-based eukaryotic circadian clocks.
(A) Diagram showing the basic structure of a circadian negative-feedback transcription oscillator. The transcrip-
tion repressor is regulated by multisite phosphorylation and proteasome-mediated proteolysis. (B–E) Major
components of the circadian TTFL-based oscillator in each species. Note that the indicated components and
pathways were selected based on the context of this review; the actual circadian systems are far more complex
reaction networks involving numerous gene products. EC (evening complex) composed of ELF4, LUX, and ELF3.
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2013). These changes are regulated by the tim-
ing of transcription and the mRNA maturation
process, independent of the biochemical char-
acteristics of the CRY/PER proteins themselves.
However, evidence suggests that the dynamics of
mRNA abundance are less important in eliciting
rhythmic transcription; noncircadian expres-
sion of the per gene in Drosophila (Ewer et al.
1988; Frisch et al. 1994; Vosshall and Young
1995; Yang and Sehgal 2001) and a constitutive
supply of CRY protein in mammals can support
circadian oscillation (Fan et al. 2007; Ukai-Ta-
denuma et al. 2011), indicating the importance
of protein-level dynamics in the regulation of
circadian clocks. Consistent with this view,
rhythmic changes in mammalian PER levels
were observed when PER was expressed under
a constitutive promoter (Yamamoto et al. 2005;
Fujimoto et al. 2006; Nishii et al. 2006).

In protein-level regulation of the circadian
period, several theoretical models predict the
importance of transcriptional repressor degra-
dation rates (Gerard et al. 2009). In a simplified
negative feedback TTFL model such as the
Goodwin model, accelerating the degradation
rate shortens the circadian period (Forger
2011), and this relationship is observed in mod-
el organisms. The degradation rate of core
circadian components is fine-tuned by their
phosphorylation and subsequent proteasome-
dependent degradation. In mammals and Dro-
sophila, the circadian period is shortened or
lengthened by mutations that destabilize or sta-
bilize PER, respectively (Vanselow et al. 2006;
Chiu et al. 2008; Meng et al. 2008; Syed et al.
2011). Mammalian CRY also regulates the cir-
cadian period; genetic and pharmacological
perturbations that stabilize CRY lengthen the
period (Siepka et al. 2007; Hirota et al. 2012;
Gao et al. 2013; Hirano et al. 2017), while de-
stabilizing CRY shortens it (Hirano et al. 2013,
2016; Yoo et al. 2013). The causal relationship
between CRY degradation and a shorter period
was demonstrated by tuning the period through
CRY-specific artificial proteolysis (Ode et al.
2017). In Neurospora, FRQ stability is also
well correlated with the circadian period (Liu
et al. 2000; Gorl et al. 2001; Baker et al. 2009;
Tang et al. 2009).

Recent findings, however, indicate that peri-
od-determination processes can be independent
of transcriptional-repressor clearance rates. De-
leting a ubiquitin-ligase component leading to
the proteolysis of FRQ stabilized FRQ but, sur-
prisingly, had little effect on rhythmic FRQ ex-
pression (Larrondo et al. 2015). Several mutant
alleles of mammalian CRY1 altered the circadi-
an period but had little effect on CRY1’s stability
(Ode et al. 2017). One chemical biology study
designed a compound that stabilizes CRY1 and
shortens the circadian period (Oshima et al.
2015). These studies suggest that the regulation
of protein quantity (the rates of protein produc-
tion and degradation) does not tell the entire
story of circadian-period determination, and a
question remains about the general applicability
of the TTFL model in determining circadian
periods (Gallego and Virshup 2007; Blau 2008).

POSTTRANSLATIONAL CIRCADIAN
OSCILLATOR DESIGN PRINCIPLES
IN CYANOBACTERIA

The prokaryotic cyanobacterial circadian clock
is an example of circadian-period determination
independent of protein-quantity dynamics. This
clock is driven by the proteins KaiA, KaiB, and
KaiC (Ishiura et al. 1998). KaiC represses tran-
scription, and its targets include KaiC itself.
Thus, it was proposed that KaiC forms a TTFL
(Fig. 2A). However, a subsequent study showed
that the circadian clock in cyanobacteria can op-
erate in the absence of global transcription and
translational activities (Tomita et al. 2005). In-
deed, autonomous circadian rhythmicity in the
phosphorylation status of purified KaiC can be
reconstituted by incubating a mixture of KaiC,
KaiA, and KaiB with ATP in vitro (Nakajima
et al. 2005). Thus, KaiC provides a posttransla-
tional oscillator (PTO) as well as a TTFL-based
negative-feedback architecture. The coupling of
PTO and TTFL-based oscillators appears to be
important for cyanobacteria circadian clocks,
depending on growth conditions (Kitayama
et al. 2008; Teng et al. 2013). PTO rhythmicity
requires fine-tuning the expression of KaiA,
KaiB, and KaiC at specific ratios for oscillation
in vitro (Nakajima et al. 2010). Their expression
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is also regulated by translational efficiency: non-
optimal codon usage in kaiBC genes tunes the
amplitude of the circadian clock in response to
growth conditions (Xu et al. 2013). However,
detailed analysis of a reconstituted KaiC oscilla-
tor revealed amechanism inwhich protein func-
tion itself creates the circadian oscillation and
determines 24-h rhythmicity.

KaiC is biochemically unique. It functions as
a homohexamer and has autophosphorylation,
autodephosphorylation, and ATPase activities.
KaiC has two sites that are autophosphorylated
and autodephosphorylated in a defined order,
such that KaiC undergoes four distinct phos-
phorylation states over the course of the circa-
dian cycle (Fig. 2B) (Nishiwaki et al. 2007; Rust
et al. 2007). Each phosphorylation state has a
distinct affinity to KaiA and KaiB. In turn,
KaiA and KaiB regulate KaiC’s autophosphor-
ylation and autodephosphorylation to autono-

mously switch between a “daytime” KaiC com-
plex with autophosphorylation activity and a
“nighttime” complex with autodephosphoryla-
tion activity. These switches include dynamic
structural alterations in a flexible loop domain
in KaiC (Chang et al. 2011; Tseng et al. 2014)
and a fold switch in the KaiB structure (Chang
et al. 2015).

The force that drives KaiC status switching is
provided through KaiC-intrinsic ATP hydroly-
sis and ADP/ATP exchange. The ATP-hydroly-
sis rate is relatively slow (∼10ATPmolecules per
day), is well correlated with the circadian period
in vivo for several period-modulating mutants
(Terauchi et al. 2007), and is unaffected by
changes in incubation temperature (Terauchi
et al. 2007; Murakami et al. 2008). Thus, in cy-
anobacteria, temperature-insensitive ATPase
activity is proposed to support temperature
compensation of the circadian period, a mech-

A B

C

Local structural change

KaiC
P

P

KaiC gene

KaiC
P

PKaiC

KaiC
P

KaiC P

Autophosphorylation Autophosphorylation

Auto-dephosphorylation Auto-dephosphorylation

ATPase

Changes in protein–protein interactions and

enzymatic activities

ATP

ADP
P

P P

ATP hydrolysis

(temperature compensated)

Sequential (de-)phosphorylation

Figure 2. The KaiA/B/C-dependent posttranslational circadian oscillator in cyanobacteria. (A) KaiC represses its
own transcription, and thus forms a transcriptional negative-feedback loop. Although every reaction should be
reversible, biased reaction rates between antagonizing kinase/phosphatase reactions are required to create a
posttranslational oscillator (PTO). (B) A mixture of KaiA/B/C with ATP can reconstitute a PTO in vitro. (C)
The period-determining step of the KaiC oscillator is temperature-insensitive ATP hydrolysis, which induces a
structural change in KaiC.
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anism for maintaining a constant circadian pe-
riod irrespective of environmental temperature.
The crystal structure of KaiC reveals that the
ATP-hydrolysis rate is determined by the posi-
tion of ATP’s phosphorus atom and a water
molecule (Abe et al. 2015). The unfavored posi-
tion of the water molecule slows down ATP hy-
drolysis, which is coupled to an alternation of
KaiC’s structure at ATP-binding surfaces, fur-
ther slowing ATP hydrolysis (Abe et al. 2015)
and driving a structural change in KaiC that
induces it to interact with KaiA/B (Snijder
et al. 2017; Tseng et al. 2017).

Based on the KaiC oscillator mechanism, we
can deduce an abstractive design principle of the
posttranslational circadian oscillator (Fig. 2C):
energy from temperature-compensated ATP
hydrolysis induces local structural alterations
that induce biochemical changes in protein–
protein interactions, enzymatic activities, and
modification patterns. Transitions between pro-
tein states have a significant energy barrier that
determines the length of the circadian period. In
this scenario, the circadian period is not deter-
mined by the dynamics of protein quantity, but
rather by the dynamics of status change or the
quality of each protein molecule.

MULTISITE PHOSPHORYLATION
DETERMINES THE PERIOD OF EUKARYOTIC
CIRCADIAN CLOCKS

Although transcription-independent circadian
oscillation marked by cellular redox states has
been found in eukaryotic cells (O’Neill and
Reddy 2011; O’Neill et al. 2011; Edgar et al.
2012; Reddy and Rey 2014), it is not known
whether components in TTFL-based eukaryotic
circadian oscillators can elicit posttranslational
oscillation. If you recall, however, that the cya-
nobacteria circadian clock adopts a combination
of PTO and TTFL-based oscillators, it may be
useful to consider that some part of the design
principles observed in the cyanobacteria circa-
dian PTO might be also applicable to the regu-
lation of eukaryotic circadian oscillators.

APTOcan theoreticallybeconstructedusing
a generic kinase, phosphatase, and substrate (Jol-
ley et al. 2012) with a similar oscillation mecha-

nism to that proposed through the modeling of
the KaiA/B/C oscillator (Fig. 3A) (Clodong et al.
2007;Rust et al. 2007; vanZonetal. 2007).APTO
constructedwith a kinase, phosphatase, and sub-
strate protein (assuming that processes are cata-
lyzed in the Michaelis–Menten scheme) must
use a substrate that is phosphorylated atmultiple
sites, because reversible phosphorylation at one
site alone cannot produce autonomous oscilla-
tion in the substrate’s phosphorylation states
(Angeli and Sontag 2008; Conradi and Shiu
2015). Interestingly, various lines of evidence
show that several components of the eukaryotic
circadian oscillators are also phosphorylated at
multiple sites (Fig. 1), and that such multisite
phosphorylation is critical for determining the
oscillation period. Indeed, as discussed in the
following sections, several features of design
principles found in cyanobacterial PTO can be
also found in the eukaryotic circadian substrates
of themultisite phosphorylation andkinases cat-
alyzing the phosphorylation.

CK1, CK2, and Glycogen Synthase Kinase
(GSK)3β

Casein kinase 1 (CK1) is a conserved compo-
nent that markedly regulates the circadian-clock
period in mammals and Drosophila. CK1ε was
first characterized as a period-controlling kinase
coded by the Drosophila gene doubletime, mu-
tations of which shorten or lengthen the circa-
dian period (Kloss et al. 1998; Price et al. 1998).
CK1ε was subsequently identified as the mole-
cule responsible for the shorter circadian period
found in tau mutant hamsters (Lowrey et al.
2000). Another CK1 isoform, CK1δ, was iden-
tified as a mutation associated with a familial
advanced sleep-phase syndrome (FASPS) pedi-
gree (Xu et al. 2005). The genetic evidence for
CK1’s contribution to period determination was
further supported by high-throughput screen-
ing of small molecules or short interfering
RNAs (siRNAs), which identified chemicals/
siRNAs that lengthen the circadian period by
inhibiting CK1δ/ε (Hirota et al. 2008, 2010; Iso-
jima et al. 2009; Zhang et al. 2009; Chen et al.
2012). Screening revealed that GSK3β, casein
kinase 2 (CK2), and CK1α also control the cir-
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cadian period (Hirota et al. 2008, 2010; Maier
et al. 2009; Zhang et al. 2009). Although other
kinases such as AMP-activated protein kinase
(AMPK), calmodulin-dependent protein kinase
II (CaMKII), and mitogen-activated protein ki-
nase (MAPK) regulate circadian clocks by in-

corporating various cellular and environmental
signals (Gallego and Virshup 2007; Reischl and
Kramer 2011), the importance of CK1, CK2,
and GSK3β in period determination is high-
lighted both by screening studies and in the con-
servation of their roles across species. Among
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Phosphorylation-Dependent Timekeeping in Eukaryotes

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a028357 7

Laboratory Press 
 at University of Tokyo on December 27, 2017 - Published by Cold Spring Harborhttp://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


these kinases, CK1 may have one of the most
prominent effects on the circadian period be-
cause the inhibition of CK1δ/ε can double the
period up to 48 h (Isojima et al. 2009) and be-
cause CK1δ/ε-dependent phosphorylation in
vitro andCK1δ/ε-dependent degradation in cel-
lulo are both temperature-compensated (Iso-
jima et al. 2009).

Kinases can phosphorylate multiple sites on
a substrate in a random manner, phosphorylat-
ing each site with a random access, or in a se-
quential manner in which the kinase phosphor-
ylates the target sites in a specific order (Yamada
and Forger 2010). Intriguingly, CK1, GSK3β,
and CK2 undergo sequential phosphorylation
(Fig. 3B). CK1’s substrate consensus sequence
is pS/T-X-X-S/T (pS/T denotes phosphorylated
serine or threonine, X denotes any amino acids,
and S/T denotes the target residue). The CK1
kinase preferentially phosphorylates residues
downstream of prephosphorylated residues
(Flotow et al. 1990). The consensus sequence
of GSK3β is S/T-X-X-X-pS/T (Frame and Co-
hen 2001), and that of CK2 is S/T-X-X-D/E,
where substituting pS into the +1 and +3 posi-
tions optimize the phosphorylation efficiency
(St-Denis et al. 2015). Thus, all three of these
important period-controlling kinases preferen-
tially phosphorylate residues near prephos-
phorylated residues. When a kinase with this
property acts on multiple and clustered target
residues, phosphorylation events preferentially
follow a defined order. For instance, CK1 pref-
erentially phosphorylates sites sequentially,
from the peptide amino terminus toward the
carboxy terminus. This sequential phosphory-
lation also makes it easy to enrich local protein
regions with phosphorylated residues.

PER

Transcription repressors in the eukaryotic circa-
dian oscillator are regulated through multisite
phosphorylation, catalyzed at least partly by the
above-mentioned kinases. PER in fly and mam-
mals is among the best-understood substrates of
CK1δ/ε (DBT in Drosophila). PER is progres-
sively phosphorylated as the circadian cycle pro-
gresses (Edery et al. 1994; Lee et al. 2001). The

mammalian PER sequence contains a repeat of
the CK1motif. Once the amino-terminal side of
the S-X-X-S repeat is phosphorylated (i.e., prim-
ing phosphorylation), CK1 can efficiently phos-
phorylate the downstream serine cluster (Vanse-
low et al. 2006). A mutation on the priming
phosphorylation site, found in a FASPS pedigree
(Toh et al. 2001), destabilizes the PER protein
(Vanselowet al. 2006), indicating thatphosphor-
ylationat this sitehelps stabilizePERandregulate
the circadian period. The kinase responsible for
the priming site is unclear, but CK1δ/ε may be
able to act on the nonphosphorylated PER-de-
rived sequence (Isojima et al. 2009). Another
PER phosphorylation domain is important for
proteasome-dependent PER degradation (Eide
et al. 2005; Shirogane et al. 2005; Shanware
et al. 2011; Zhou et al. 2015). CK2 also controls
the period of the mammalian circadian clock by
phosphorylating PER (Tsuchiya et al. 2009). In
Drosophila, DBT phosphorylates PER at multi-
ple sites (Chiu et al. 2008).DBT-dependentmul-
tisite phosphorylation is primed by NEMO ki-
nase (Chiuet al. 2011;Yuet al. 2011). Inaddition,
CK2 (Lin et al. 2002; Akten et al. 2003; Nawa-
thean and Rosbash 2004) and GSK3β (Martinek
et al. 2001; Fang et al. 2007; Ko et al. 2010; Hara
et al. 2011) regulate the actionofDrosophilaPER,
although the effect is probably mediated partly
through thephosphorylationofTIMboundwith
PER (Top et al. 2016).

CRY

Mammalian CRY also has multiple phosphory-
lation sites (Lamia et al. 2009; Gao et al. 2013;
Ode et al. 2017) targeted by various kinases,
including CK1δ/ε (Eide et al. 2002; Qin et al.
2015; Ode et al. 2017) and GSK3β (Kurabayashi
et al. 2010). The multisite phosphorylation of
CRY plays a critical role in period determination
since combinatorial mutations in the phosphor-
ylation sites results in the twofold change of the
period length from 19 to 38 h (Ode et al. 2017).
CRY phosphorylation sites appear to be concen-
trated in the P-loop and carboxy terminus, and
mutations in several phosphorylation sites in
these regions significantly affect the circadian
period (Gao et al. 2013; Liu and Zhang 2016;
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Ode et al. 2017). Furthermore, a recent study
identified a FASPS pedigree CRY mutation in
which an alanine in the P-loop region is replaced
by threonine (Hirano et al. 2016). This substitu-
tionmight create a de novo phosphorylation site
around the P-loop that modulates the circadian
period. Indeed, the threonine-substitution phe-
notype can be recapitulated by aspartic-acid
substitution, which mimics the phosphorylated
residue (Hirano et al. 2016).

FRQ

Like PER, FRQ is progressively phosphorylated
during the circadian cycle (Garceau et al. 1997)
at multiple sites, many of which are presumably
phosphorylated by CK1 and CK2 (Baker et al.
2009; Tang et al. 2009). CK1 stably binds FRQ
and is responsible for its clustered phosphoryla-
tion (He et al. 2006; Baker et al. 2009; Querfurth
et al. 2011). CK2 also directly phosphorylates
FRQ (Yang et al. 2003; Mehra et al. 2009).

CCA1

InArabidopsis, CCA1 is phosphorylated by CK2
to obtain the proper circadian period (Sugano
et al. 1998, 1999; Daniel et al. 2004). Depleting
CK2 or increasing its activity lengthens or short-
ens the circadian period, respectively (Sugano
et al. 1999; Lu et al. 2011). Although the kinases
responsible for phosphorylatingCCA1arenot as
well understood as those in other conventional
model organisms, several circadian proteins ex-
hibit circadian variations in their phosphoryla-
tion state (Fujiwara et al. 2008), suggesting that
multisite phosphorylation is critical in regulat-
ing the circadian period in plants (Seo and Mas
2014).A studyusing theunicellular plantOstreo-
coccus tauri revealed that pharmacological inhi-
bition of CK1 markedly lengthens the period
over 8 h, suggesting that the central role of CK1
in determining the circadian period is conserved
in the plant kingdom (van Ooijen et al. 2013).

Temperature Compensation

CK1 andCK2 and their substrates are important
for the temperature compensation that pre-

serves the circadian period. Mammalian CK1
is linked to temperature compensation (Tosini
and Menaker 1998; Isojima et al. 2009; Zhou
et al. 2015), andCK2 is at least partly responsible
for the temperature compensation in Neurospo-
ra and higher plants (Mehra et al. 2009; Portoles
and Mas 2010).

In general, increased temperature acceler-
ates biochemical reactions such as phosphory-
lation and protein degradation, thus raising the
temperature should accelerate clock speed.
However, a previous study indicated that CK1δ/
ε kinase activity markedly influences the speed
of mammalian circadian clocks and is largely
insensitive to temperature changes in vitro (Iso-
jima et al. 2009). A subsequent study revealed
that temperature-insensitive kinase activity is
achieved through CK1δ/ε’s ability to bind sub-
strate and phosphorylated products in a tem-
perature-dependent manner (Shinohara et al.
2017). When CK1 acts on a substrate with a
single phosphorylation site, which may be sim-
ilar to the reaction step for catalyzing the prim-
ing phosphorylation site, raising the tempera-
ture decreases the affinity between the kinase
and the substrate to be phosphorylated (Fig.
3C). In addition, when CK1 acts on a substrate
with multiple phosphorylation sites, raising the
temperature increases the affinity between the
kinase and the phosphorylated product at mul-
tiple sites in the presence of ADP, reducing the
turnover number of CK1 action (Fig. 3D). These
temperature-sensitive affinity alterations reduce
substrate binding and product release at higher
temperatures. Therefore, the net kinase-reaction
rate stays nearly constant despite temperature
changes. Ueda and his colleagues successfully
conferred temperature insensitivity on another
temperature-sensitive kinase protein by intro-
ducing an evolutionarily conserved CK1-specif-
ic domain that seems to bind to substrates and
phosphorylated product.

The presence of a temperature-insensitive
kinase such as CK1 can provide another layer
of regulation to achieve the circadian tempera-
ture compensation. Detailed analysis of the deg-
radation kinetics of mammalian PER showed
that raising the temperature stabilizes PER,
which were proposed by the combination of
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temperature-insensitive and temperature-sensi-
tive kinases (Zhou et al. 2015). At higher tem-
peratures, CK1δ/ε preferentially phosphorylates
PERon the PER-stabilizing domain (which con-
tains the site of themutation found in the FASPS
pedigree), while at lower temperatures, the
CK1δ/ε preferentially phosphorylates PER on
the PER-destabilizing domain (Fig. 3E). Thus,
increasing the temperature decelerates the PER
degradation, slowing down the pace of the cir-
cadian clock. The similar temperature-depen-
dent stability mechanism was also proposed in
Neurospora FRQ. A study proposed that in-
creasing the temperature accelerates FRQ stabi-
lization and counteracts any temperature-de-
pendent acceleration of the circadian clock
(Mehra et al. 2009). This balance can be modu-
lated by mutations of either CK2 or the CK2-
phophorylation site on FRQ. These studies in-
dicated that temperature-dependent kinase ac-
tivity counteracts the canonical acceleration of
clock speed in response to a rise in temperature
by modulating the substrate degradation rate.

To summarize, the CK1δ/ε kinase reaction
itself can be insensitive to temperature changes,
providing the mechanism of temperature com-
pensation at the systems’ component level. This
temperature-insensitive kinase together with
other temperature-sensitive kinases (or proba-
bly phosphatases) may provide the system-level
tuning of FRQ/PER proteolysis, which further
compensates the effect of temperature changes.
Thesemechanisms are not mutually exclusive in
circadian clocks (Hogenesch and Ueda 2011);
however, the former model suggests that tem-
perature-insensitive reactions are not exclusive
to the circadian substrate. Rather, if the affinity
of CK1δ/ε for phosphorylated products is im-
portant for temperature-insensitive kinase reac-
tions, such temperature-compensated reactions
may also function in other biological processes.
In a study of temperature-compensated budding
yeast metabolic oscillation, the oscillation peri-
od was sensitive to CK1 and GSK3β (Causton
et al. 2015). Indeed, a budding yeast homologue
of CK1 also preserves temperature-compensat-
ed kinase activity (Shinohara et al. 2017). There-
fore, the CK1 enzyme might confer robust bio-
chemical reaction rates on circadian clock and

other systems to protect against environmental
temperature fluctuations.

MULTISITE PHOSPHORYLATION AT
FLEXIBLE PROTEIN REGIONS

The multisite phosphorylation process itself
may contribute to period determination inde-
pendent of the regulation of protein degrada-
tion. In a recent study inNeurospora, mutations
in FRQ phosphorylation sites strongly affected
the circadian period even in a genetic back-
ground in which FRQ’s stability was unchanged
(Larrondo et al. 2015). In another study, a series
of phosphorylation-site mutants of mammalian
CRY severely affected the circadian period, even
though CRY’s stability was only marginally af-
fected (Ode et al. 2017). Furthermore, a dele-
tion-mutant CRY found in delayed sleep-phase
disorder extends the circadian period without a
detectable change in the stability of the CRY
protein (Patke et al. 2017). In plants, CK2 phos-
phorylation regulates CCA1 transcription with-
out affecting the amount of CCA1 protein (Por-
toles and Mas 2010).

KaiC studies strongly suggest that circadian
clock speed is encoded as the time necessary for
changes in protein structure. On the other hand,
a common feature of other circadian-period reg-
ulatory processes is that the period is largely
determined by multisite phosphorylation by ki-
nases that elicit clustered and sequential phos-
phorylation, although the events downstream of
the phosphorylation may vary among circadian
systems. Are there any links connecting the de-
sign principles of the KaiC oscillator and multi-
site phosphorylation-based oscillation? Serial
enzymatic reactions such asmultisite phosphor-
ylation can produce cooperative responses and a
sufficient delay to produce fully modified sub-
strates, and can potentially determine period
length (Salazar and Hofer 2009; Salazar et al.
2010; Ferrell and Ha 2014). Studies suggest
that even apart from its time-related character-
istics, multisite and clustered phosphorylation
might be able to strongly modulate protein
structure.

Multisite phosphorylation often affects pro-
tein structure and function by acting on intrin-
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sically disordered regions (IDRs) of substrate
proteins (Valk et al. 2014; Wright and Dyson
2015). In IDRs, the polypeptide structure is
highly flexible, not rigid as in an α-helical con-
formation. IDRs tend to be located at the protein
surface where they are accessible to kinases. In-
deed, statistical analyses of proteomics data in-
dicated that phosphorylation sites and that IDRs
are located close together (Iakoucheva et al.
2004; Xie et al. 2007), and IDRs are often regu-
lated by phosphorylation (Holt et al. 2009; Tya-
nova et al. 2013; Sharma et al. 2014). Multiple
phosphorylations on IDRs dramatically alter the
bulk electrostatic potential of the region and
may induce dynamic structural changes (Fig.
4A) (Theillet et al. 2014). When the flexibility
of an IDR strongly affects intramolecular inter-
actions, multisite phosphorylation can change
the overall structure of the proteins themselves.
If the IDR is located at the interface of protein–

protein interactions, such structural changes
could affect binding affinity.

Multisite phosphorylations on IDRs may
have a critical role for circadian-period control.
It has been suggested that FRQ is an intrinsically
disordered protein (IDP) (Hurley et al. 2013).
Multisite phosphorylation changes the structure
of FRQ (Querfurth et al. 2011), and the non-
phosphorylated FRQ is proposed to have a com-
pact form through an interaction between the
basic amino-terminal domain and the acidic
carboxy-terminal domain. Multisite phosphor-
ylation of the amino-terminal domain loosens
the interaction, and the FRQ becomes more
sensitive to limited protease digestion. The mul-
tisite phosphorylation on PER appears to be
similar to FRQ. Although PER contains func-
tionally important structured domains, such as
Par-Arnt-Sim (PAS) domains and the CRY-
binding domain (Hennig et al. 2009; Kucera
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structure. (B) The multisite phosphorylation process could be a period-determining step in eukaryotic circadian
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et al. 2012; Nangle et al. 2014), most of the other
regions are predicted to be disordered (Gustaf-
son and Partch 2015). In both mammalian and
Drosophila PER, phosphorylation states control
the PER global structure, as indicated by an al-
tered susceptibility to protease treatment (Chiu
et al. 2011; Zhou et al. 2015). In contrast to FRQ
and PER, the structure of the photolyase homol-
ogy domain of cryptochrome superfamily pro-
teins is well conserved, indicating that CRY is
not an IDP. Nonetheless, clustered phosphory-
lation sites that are critical for controlling the
circadian period are located near the flexible
P-loop (Hirano et al. 2016; Liu and Zhang
2016; Ode et al. 2017). Multisite phosphoryla-
tion appears to additively regulate the circadian
period, and the number of phosphorylation sites
around this loop domain may serve as a cumu-
lative timer for the circadian period (Ode et al.
2017). These lines of evidence suggest that struc-
tural changes in flexible regions, elicited bymul-
tisite phosphorylation, are a critical step in de-
termining the circadian period.

Although the detailed mechanisms of peri-
od-determination remain unknown, the out-
come of phosphorylation-dependent protein
structural change could be coupled to TTFL-
based architecture via proteolysis (Chiu et al.
2011; Zhou et al. 2015). Changes in the multiple
phosphorylation state would also affect the pro-
tein–protein interaction. We further point out
that the substratewithmultiple phosphorylation
sites can reciprocally regulate the action of ki-
nases such as CK1. For example, PER protein
alters the CK1’s substrate preference (Qin et al.
2015). Anionic small molecules and phosphor-
ylated peptides can bind to the allosteric site of
CK1 and therebymodulate the CK1’s enzymatic
activity (Shinohara et al. 2017). These substrate–
CK1 interactions may imply that phosphor-
ylation events in a stable protein complex,
including CK1, PER, and CRY, should not be
interpreted as a simple mixture of kinases and
substrates. Instead, the components in a kinase–
substrate complex cooperatively regulate the
process of multiple phosphorylation, providing
the temperature-compensated and accurate pe-
riod-determining information for the eukaryot-
ic circadian clocks.

CONCLUDING REMARKS

The importance of multisite phosphorylation
and structural changes in eukaryotic circadian-
period control remind us of the unsolved ques-
tions: What is the source of the 24-h period?
What are the rate-limiting steps? Why is the
circadian period is so slow (a scale of minutes)
compared with biochemical events in general (a
scale of seconds), but still accurate (Akiyama
2012). Studies of the KaiC oscillator revealed a
structural basis for slow kinetics (Abe et al.
2015). In contrast, a structural basis for its ac-
curacy remains unknown. Although transcrip-
tion–translation dynamics are at the core of
noncyanobacterial circadian clocks, we may
well find phosphorylation-dependent structural
changes at the core of timekeeping mechanisms
in these organisms. In addition, a recent study
proposed that the slow cis/trans isomerization of
specific peptide bonding in BMAL1 is a time-
keeping mechanism in mammalian circadian
clocks (Gustafson et al. 2017). Such rate-limiting
events, encoded as protein structures, could be
induced directly (via control of the local electro-
static state) or indirectly (via protein–protein
interactions) through multisite phosphoryla-
tion. Furthermore, the temperature-compensa-
tion property of reaction speed could be en-
coded via multisite phosphorylation by CK1
(Isojima et al. 2009; Shinohara et al. 2017).

From this perspective, the circadian time-
keeping mechanism in the KaiC protein oscilla-
tor and eukaryotic circadian oscillator may con-
verge as the progressive regulation of protein
structure powered by temperature-compensated
enzymatic activities—KaiC’s ATPase activity
and CK1’s phosphorylation activity (Fig. 4B),
thus encoding circadian-period determination
as a quality rather than quantity of protein dy-
namics (Larrondo et al. 2015; Ode et al. 2017).
The rate-limiting step should be encoded as a
protein structural property to keep the period
length constant regardless of fluctuations in
expression (Dibner et al. 2009), especially for
low-abundance circadian-transcription factors
(Forger and Peskin 2005; Narumi et al. 2016).
To evaluate this perspective, we must execute a
structure-based analysis of the clock proteins,
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and reconstruct and design circadian timekeep-
ing steps in eukaryotic circadian systems.
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