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SUMMARY

To conduct comprehensive characterization of mo-
lecular properties in organisms, we established
an efficient method to produce knockout (KO)-
rescue mice within a single generation. We applied
this method to produce 20 strains of almost
completely embryonic stem cell (ESC)-derived mice
(‘‘ES mice’’) rescued with wild-type and mutant
Cry1 gene under a Cry1�/�:Cry2�/� background. A
series of both phosphorylation-mimetic and non-
phosphorylation-mimetic CRY1 mutants revealed
that multisite phosphorylation of CRY1 can serve as
a cumulative timer in the mammalian circadian clock.
KO-rescue ES mice also revealed that CRY1-PER2
interaction confers a robust circadian rhythmicity
in mice. Surprisingly, in contrast to theoretical pre-
dictions from canonical transcription/translation
feedback loops, the residues surrounding the flexible
P loop and C-lid domains of CRY1 determine circa-
dian period without changing the degradation rate
of CRY1. These results suggest that CRY1 deter-
mines circadian period through both its degrada-
tion-dependent and -independent pathways.

INTRODUCTION

A gene-rescue experiment undermutant background is powerful

and has been used in mammalian genetics (Antoch et al., 1997),
176 Molecular Cell 65, 176–190, January 5, 2017 ª 2017 Elsevier Inc
but the research procedures often require several generations

of animal crosses to obtain genetically modified mice. To over-

come these problems, it is ideal if one can perform next-gener-

ationmammalian genetics, which can be defined as a production

and phenotype analysis of genetically modified mice within a

single generation. We previously reported that an injection of

three-inhibitor (3i)-treated embryonic stem cells (ESCs) into early

stage embryos at eight-cell stage can produce chimera mice

with efficient contribution of ESC-derived cells (Kiyonari et al.,

2010). Using this technique, it will be plausible to analyze the

phenotype of gene-rescued mouse within a single generation

by using mutant ESCs as a host cell line for the rescued gene.

Among various applications for this technological platform, the

mammalian circadian clock is an ideal model system because of

its underlying complex and dynamic molecular networks. The

E/E’-box-mediated transcriptional program has a critical role

in the core autoregulatory loop of themammalian circadian clock

(Mohawk et al., 2012). In this loop, basic helix-loop-helix (bHLH)-

PAS (Per-ARNT-Sim) transcription activators such as BMAL1

and CLOCK form heterodimers that bind to E/E’-box cis-ele-

ments in the promoter regions of their target genes including

the Per and Cry genes; CRYs in turn form repressor complexes

including PERs and other binding partners (Brown et al., 2005;

Duong et al., 2011; Kim et al., 2015) that physically associate

with the BMAL1/CLOCK complex to inhibit E/E’-box-mediated

transcription. This delayed feedback repression mediated by

CRYs, especially CRY1, plays a pivotal role in the cell autono-

mous circadian oscillation in mammals (Khan et al., 2012;

Ukai-Tadenuma et al., 2011).

This model of transcriptional/translational feedback repres-

sion leads to theoretical predictions that the increased turnover

rate of transcription repressor mRNAs or proteins results in
.
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Figure 1. The Phenotype Analysis of KO-Rescue MEFs

(A) A systems framework to reveal the critical residues of CRY1 for controlling the circadian period in vivo.

(B) Identified (black) and predicted (blue) phosphorylation sites, and conserved residues involved in canonical electron-transfer pathway in 6-4 photolyase

(green). Identified phosphorylated peptides are shown in Table S1.

(legend continued on next page)
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circadian-period shortening (Forger, 2011). Several lines of evi-

dence support this prediction that circadian period of mamma-

lian clocks can be controlled by protein stability of CRY1/2. For

example, FBXL3, a component of Skp1-Culin-F-box-protein

(SCF) ubiquitin ligase complex that guides CRY1/2 to protea-

some-mediated proteolysis, shortens circadian period (Busino

et al., 2007; Godinho et al., 2007; Siepka et al., 2007). By

contrast, KL001, which binds to the flavin adenine dinucleotide

(FAD)-binding pocket of CRY1/2 and stabilizes the protein,

lengthens the circadian period (Hirota et al., 2012; Nangle

et al., 2013).

However, there are some results that contradict with the

theoretical prediction. For example, destabilization of CRY1 by

AMPK-dependent phosphorylation should results in the short-

ening of circadian period, but stimulation of AMPK results in

period lengthening (Lamia et al., 2009). A recent chemical-

biology study even succeeded to synthesize a compound bound

to the CRY1/2 FAD-binding pocket, that shortens the circadian

period, but surprisingly, stabilizes CRY1 (Oshima et al., 2015).

These results imply that the stability-independent period deter-

mination of circadian clocks, demonstrated in other organisms

(Larrondo et al., 2015; Nakajima et al., 2005), might be also

true for mammalian circadian clocks.

In this study, we established an efficient method to produce

knockout (KO)-rescue mice within a single generation (KO-

rescue ES mouse method) by the 3i-8-cell method. We then

applied this method to the production of 20 strains of different

Cry1 wild-type/mutants knockin mice under a Cry1�/�:Cry2�/�

double mutant background. The mutagenesis of CRY1 revealed

that residues surround the flexible P loop and C-lid domains of

CRY1 determine the period length of circadian clock, and most

of them have only a marginal effect on the degradation rate of

CRY1, suggesting the presence of period determination mecha-

nism independent of CRY1’s degradation rate. This high-

throughput knockin mouse strategy would accelerate circadian

and other fields of biology using various mouse strains harboring

modified genes or reporters and thus may help to shift the con-

ventional way of mammalian genetics, which depends largely on

the crossing of animals.

RESULTS

The Phenotype Analysis of KO-Rescue Mouse
Embryonic Fibroblasts
We intended to analyze complex and dynamic molecular net-

works in organisms by focusing on CRY1 protein in mammalian

circadian clocks as a model system (Figure 1A). The first step is

the identification of critical residues of CRY1 for circadian-period

determination. Phospho-peptides derived from CRY1-overex-
(C) Examples of circadian oscillation in Cry1�/�:Cry2�/� MEF monitored by transi

Per2 gene’s promoter (P(Per2)-dLuc). For the Cry1�/�:Cry2�/� MEF rescue expe

that the maximum value of each time course data is one, and shown as average (s

in each panel for comparison.

(D) Period and amplitude of rescued circadian rhythmicity in Cry1�/�:Cry2�/� M

arrhythmicmutants were classified based the experiments using NIH 3T3 cells as

experiments are shown in Table S2. Wild-type/mutant CRY1 indicated in red we

See also Tables S1 and S2 and Figure S1.
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pressed 293T cells were analyzed with mass spectrometer

(Figure S1A). We identified 27 phosphorylation sites (Figure 1B;

Table S1) including previously reported residues targeted by

mitogen-activated protein kinase (MAPK S247) (Sanada et al.,

2004), AMPK (S71 and S280) (Lamia et al., 2009), and DNA-PK

(S588) (Gao et al., 2013). We did not identify phosphorylation at

S404 but included this residue as a possible phosphorylation

site basedondatabasepredictionasaprotein kinaseC (PKC)-tar-

geted site (Lamia et al., 2009). Three groupsof potential functional

residues in CRY1 (tryptophan tripletW320,W374, andW397; his-

tidine/tyrosine triplet H355, H359, and Y413; and asparagine

N393) were also selected based on a canonical electron-transfer

pathway proposed in its evolutionally most-related protein, 6-4

photolyase (Figure S1B) (Ozturk et al., 2007; Sancar, 2004).

Each phosphorylated residue was then mutated to phos-

phorylation-mimetic aspartic acid (D) or non-phosphorylation-

mimetic alanine (A). The conserved electron-transfer motifs

were mutated to alanine. The mutant CRY1 was then expressed

in Cry1�/�:Cry2�/� mouse embryonic fibroblast (MEF) under

the control of Cry1 promoter combined with intronic enhancer

Rev-Erb/ROR-binding element (RREs) (Ukai-Tadenuma et al.,

2011). The expressed CRY1 rescued circadian rhythmicity in

the MEF with various period and amplitude depending on the

mutations (Figure 1C). A numbers of mutants failed to rescue

the detectable rhythmicity; we noticed that there are three clas-

ses of these arrhythmic mutants, namely, dominant-short, hy-

perrepression, and hyporepression types (Figure 1D). Each class

of mutant affected the circadian rhythmicity in a qualitatively

different manner when it was overexpressed in wild-type NIH

3T3 cells (Figure S1C). When wild-type CRY1 was overex-

pressed in NIH 3T3 cells, the expression greatly suppressed

the amplitude of E-box driven reporter without affecting the

period length. Arrhythmic hyporepression mutants failed to sup-

press the amplitude suggesting the reduced transcription-

repressor activity. In contrast, mutants classified as arrhythmic

hyperrepression further suppressed the amplitude compared

with wild-type CRY1, suggesting the enhanced transcription-

repression activity. Unlike these classes, arrhythmic dominant-

short mutants accelerated the speed of circadian oscillation

when they were overexpressed in NIH 3T3 cells. We interpreted

that intrinsic period of these arrhythmic dominant-short mutants

are extremely short.

The overall in vitro phenotype results are summarized in

Figure 1D and Table S2. Although mutation on the conserved

electron-transfer motifs caused different effects, we expect

that these motifs in mammalian cryptochrome may not have an

electron transfer activity, at least in the regulation of circadian

rhythmicity, because phenylalanine substitution of tryptophan

(W374F:W397F) (23.0 ± 0.3 hr) or cysteine substitution of
ently transfected reporter plasmid expressing destabilized luciferase driven by

riments in this and the other figures, the luciferase signal was normalized such

olid line) ± SD (shade). Note that the same data for wild-type rescue was shown

EF was calculated for each mutant CRY1, and shown as average ± SD. The

shown in Figure S1C. The value of period and relative amplitude, and number of

re used for KO-rescue ES mouse experiment in Figures 4 and 5.
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asparagine N393C (corresponds to insect-specific crypto-

chromes) (28.7 ± 0.5 hr) support robust circadian oscillations.

Many of phosphorylation-mimetic mutation on the phosphoryla-

tion cluster near the P loop domain greatly shorten the circadian

rhythmicity (e.g., S243D, S247D, T249D, S252D, and S285D).

Among all analyzed phosphorylation residues, S243 appears to

be the most critical residue for period determination because

this site is the only residue that has bidirectional effects on

circadian period when mutated to A or D.

Multisite Phosphorylation of CRY1 Can Serve as a
Cumulative Timer
We then asked the logic behind the period determination, espe-

cially focusing on the phosphorylation cluster near the P loop

domain (Figure 2A). If the serial phosphorylation events are trig-

gered by priming phosphorylation at the specific site, then the

priming site works as a ‘‘switch’’ and governs the others. In

this case, alanine mutation on the priming phosphorylation site

is epistatic to the alanine mutation of the other residues. In

contrast, if the accumulation of local negative charge additively

evokes the response, then the effects of alanine mutations can

be cumulative, working as a ‘‘timer.’’ To distinguish these sce-

narios, we introduced two alanine mutations for a various pair

of phosphorylation sites indicated in Figure 2A. We also included

one phosphorylation-mimetic mutant (S158D) outside of the

region near the P loop domain.

The period of every analyzed CRY1 with mutations in two

phosphorylation residues revealed clear additive relationship

on the period determination (Figure 2B). The additive rule was

applicable not only to the distant pairs of residues (i.e., S158D

and S285A) but also to local pairs within the restricted area

near the P loop (Figures 2C and 2D; Table S3). This assay also

revealed the highly flexible nature of CRY1-dependent period

determination at nearly 2-fold dynamic range (Figure 2E). These

results suggest that multisite phosphorylation of CRY1 serves as

a cumulative timer in mammalian circadian clock.

Because S243 was the only residue that had both shortening

and lengthening effects on period, we investigated what kinase

is responsible for the phosphorylation at S243. Several algo-

rithms for kinase prediction listed casein kinase I (CKI) as a

potential kinase to phosphorylate S243 or downstream S247

(Table S4). Furthermore, we found that one of the responsible ki-

nase for S243 phosphorylation, at least in 293T cells, is CKId/ε, a

major kinase that accelerates the pace of circadian oscillation

(Figure S2A; Table S5) (Mohawk et al., 2012).
Figure 2. Multisite Phosphorylation of CRY1 Can Serve as a Cumulativ

(A) Sequence alignment of P loop and downstream sequence. Indicated residue

sapiens.

(B) Example of circadian period of wild-type (black), ormutant CRY1with single (gr

as in Figure 1. Note that the data of wild-type and of single site mutants (green)

(C) The rescued period lengths for indicated combination of dual-sites mutants we

data shown in Figure 1D.

(D) The effect of double mutants to circadian period is the sum of the effect of indiv

rescued by indicated double mutants as shown in (C). The y axis is the estimated

mutants. The period lengths are shown as average ± SD and summarized in Tab

(E) Circadian oscillation of CRY1 double mutant showing shortest period (S158D:

Figure 1, and detrended luciferase signal are shown as average ± SD.

See also Tables S3, S4, and S5 and Figure S2.
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S243 is conserved in mammalian CRY proteins and plant 6-4

photolyases but is rarely conserved among the other proteins in

cryptochrome superfamily (Figure S2B). Phylogeny analysis re-

vealed that serine/threonine and negatively charged aspartic

acid and glutamic acid reciprocally emerge among the area

surrounding S243 position (Figures S2B–S2D). A phylogenetic

theory suggests that phosphorylation activating the protein func-

tion tends to be aspartic acid or glutamic acid in the ancestral

form (Pearlman et al., 2011). Applying this rationale to mamma-

lian CRY proteins, mammalian cryptochromes for the circadian

clock might interchange the static negative charge of D/E with

a dynamic phosphorylation site for controlling circadian period.

The Development of a KO-Rescue ES Mouse Method
To directly confirm the in vivo significance of period-determining

residues identified in Cry1-rescue assay in Cry1�/�:Cry2�/�

MEF, we next conducted Cry1-rescue assay under Cry1�/�:
Cry2�/� mice. The coat color of Cry1�/�:Cry2�/� ES mice was

almost identical with the originalCry1�/�:Cry2�/�mice, suggest-

ing the contamination of host embryo cells, which would result

in white coat color, was negligible (Figure 3A). PCR-based gen-

otyping further confirmed that the contamination of cells from the

host embryo having a wild-type Cry2 allele was no more than

0.001% (Figure 3A). Both original Cry1�/�:Cry2�/� mice and

the double-knockout ES mice had arrhythmic behavior (Fig-

ure 3B). We then knocked in Cry1 under the control of Cry1 pro-

moter including an intronic RRE element (Ukai-Tadenuma et al.,

2011) into the ROSA26 locus (Figure 3C; Table S6). During the

series of knockin targeting, we used not only a conventional tar-

geting method with on-feeder ESC culture but also a

more efficient targeting method with feeder-free ESC culture

and TALENs (transcription activator-like effector nucleases)

(Figures S3A–S3F) (Sung et al., 2013). These gene-targeting

conditions are specified in Table S7.

The Cry1 cassette introduced in ROSA26 locus rescued circa-

dian rhythmicity in their behavior with slightly different periods

depending on the direction of insertion (Figures 3D and 3F; Table

S7). We chose the cassette designed to be inserted to ROSA26

locus in antisense direction for subsequent analyses, because

their behavioral period in ES mice with a single antisense

cassette (24.2-24.3 hr) was closer to the free-running periods

of Cry1+/–;Cry2–/– mice (24.29 hr) (van der Horst et al., 1999).

The stringency of the Cry1 KO-rescue ES mouse method was

confirmed by the following two experiments. First, circadian

rhythmicity was not observed if Cry1 gene is driven by
e Timer

s were used in double mutants in this figure. Mm: Mus musculus. Hs: Homo

een) or double (blue) phosphorylation residues. The experiment was carried out

were identical data shown in Figures 1C and 1D.

re calculated. Note that the periods of single site mutants (green) were identical

idual singlemutations. The x axis is the period of rescuedCry1�/�:Cry2�/�MEF

period by adding the period difference between wild-type and individual point

le S3.

S285A) and longest period (S243A:S261A). The experiment was carried out as
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non-circadian promoter (Figures 3C and 3D, Mut rescue) (Ukai-

Tadenuma et al., 2011). Second, F1 littermates of rescued

mice and Cry1�/�:Cry2�/� mice showed circadian rhythmicity

only if the offspring had Cry1-knocked-in allele in the ROSA26

locus (Figure 3E). These results indicate that the behavioral

rhythmicity is induced by the Cry1-rescue cassette. Note that,

for the ‘‘Mut rescue’’ condition, we did not analyze the exact

reason of arrhythmicity; it may be due to the altered periodicity

for the expression timing of Cry1 or the altered expression level

of Cry1. In the following experiments, we used the same (wild-

type [WT]) promoter to compare the phenotypes of different

Cry1 mutants.

The Phenotype Analysis of KO-Rescue ES Mice
Seventeen Cry1 mutants (see Figure 1D, red colored mutants)

were selected for the assay of Cry1-rescue ES mice. The

normal-period mutants in MEFs (N393C and S404A) had almost

identical or shorter period in ES mice (24.2 ± 0.1 and 23.9 ±

0.1 hr, respectively) compared with the circadian period of

WT-rescued ESmice (24.2 ± 0.1 hr) (Figure 4A). The short-period

mutants in MEFs (S158D and S285A) had shorter circadian

period in ES mice (23.9 ± 0.1 hr and 23.8 ± 0.1 hr, respectively)

(Figure 4B). In contrast, long-period mutants in MEFs (S243A,

S492D, and HHY) had significantly longer circadian period in

ES mice (24.6 ± 0.05, 25.4 ± 0.1, and 26.6 ± 0.3 hr) (Figure 4C).

The arrhythmic dominant-short mutants in MEFs (S243D,

S247D, T249D, and S285D) rescued the circadian rhythmicity in

KO-rescue ES mice and exhibited markedly shorter period

(21.1 ± 0.1, 22.4 ± 0.1, 22.7 ± 0.1, and 22.7 ± 0.1 hr, respectively)

(Figure 4D). These results strongly suggest that the intrinsic pe-

riods of arrhythmic dominant-short mutants are markedly shorter

than that of any other rhythmic mutants in MEFs. In addition, all

three arrhythmic hyporepression mutants (S261D, Y432D, and

WWW) inMEFsalsohadarrhythmicphenotype inmice (Figure4E).

These results further strengthen theconclusion that arrhythmichy-

porepressionmutants are the loss-of-function form of protein and

arequalitativelydifferent fromarrhythmicdominant-shortmutants.

Correlation between the Circadian Phenotype of
KO-Rescue MEFs and ES Mice
Overall, KO-rescue ES mice results summarized in Figure 5A

demonstrates a striking correlation between circadian periods
Figure 3. The Development of a KO-Rescue ES Mouse Method

(A) 3i-cultured Cry1�/�:Cry2�/� ESCs were derived from B6-backcrossed Cry1�

mouse with black coat color were selected. Contamination of host embryo cells

specific to wild-type or Cry2�/� allele.

(B) Representative actograms of mated pups (wild-type or Cry1�/�:Cry2�/� C57B

Shaded regions indicate dark phase. Time windows marked as blue line indicate

(C) A structure of Cry1-rescue cassette and targeted ROSA26 locus. ‘‘WT rescue

element (Ukai-Tadenuma et al., 2011). In the ‘‘Mut rescue’’ cassette, the promoter

Arrowswithnumbers indicatePCRprimers for ESCscreenings andgenome integrit

(D) Representative actograms of Cry1�/�:Cry2�/� ES mice rescued with WT rescu

antisense (AS) direction.

(E) Representative actograms of F1 offspring obtained by crossing the rescued

cassette (indicated as ‘‘+’’) at the ROSA26 locus showed circadian behavioral rh

(F) Summary of the quantified period of circadian behavioral rhythmicity shown a

conditions are summarized in Table S7.

See also Tables S6 and S7 and Figure S3.
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observed in MEFs and those observed in KO-rescue ES mice.

Note that the magnitude of circadian-period alteration in each

CRY1 mutant ES mice from the wild-type was smaller than that

of CRY1 mutant MEFs, converging close to 24 hr in KO-rescue

ES mice (Figure 5B).

There are several mutants, the phenotypes of which in ES

mice are not in line with those of MEFs; S261A mutant had

long-period phenotype in MEFs whereas the mutant ES mice

had an arrhythmic phenotype (Figure 5C). In addition, the pheno-

types of N393A and S404Dmutant both of which had arrhythmic

hyperrepression phenotypes in MEFs were not reproduced in ES

mice: N393A mutant ES mice had a long-period phenotype

(25.0 ± 0.4 hr) (Figure 5D), whereas the period of S404D tends

to be short in the first 2 weeks after the entry to constant dark-

ness condition and then became longer in the next 2 weeks

(Figure 5E). Interestingly, we found that all CRY1 mutants with

arrhythmic (S261A, S261D, Y432D, and WWW) or unstable-

period (S404D) phenotypes in ES mice had a significant reduc-

tion in the interaction with PER2 when these CRY1 mutants

were expressed in 293T cells and quantified for the amount of

PER2 co-immunoprecipitated with CRY1 (Figure 5F). These

results highlight the importance of CRY1-PER2 interaction in

stable rhythmicity in vivo.

Correlation of CRY1 Turnover Rate andCircadian Period
To investigate what biochemical properties of CRY1 protein can

determine the circadian period and amplitude, we analyzed

CRY1’s degradation rate (Figure S4A) and transcription-repres-

sion activity (Figure S4B). As a result, significant correlation

was observed between CRY1 half-life and circadian period

and between CRY1 repression activity and circadian amplitude

but not for other combinations (Figure S4C). These results are

consistent with the canonical relationship between CRY1 degra-

dation and circadian period (Forger, 2011) and between CRY1

repression activity and circadian amplitude (Khan et al., 2012).

To our surprise, a number of mutants had altered circadian

period without significant changes in protein half-life (Figure 6A,

red circles). Of note, a group of long period mutants (HHY,

S492D, S492A, and S243A) had no significant change in protein

stability, but their period was significantly longer than the most

stable mutant S588D (Gao et al., 2013). Also, it is notable

that the arrhythmic dominant-short mutants (S243D, S247D,
/�:Cry2�/� strain (van der Horst et al., 1999). ESC clones producing male ES

was evaluated by semiquantitative genomic PCR for Cry2 locus with primers

L/6) and ES mice derived from ESCs of wild-type or Cry1�/�:Cry2�/� C57BL/6.

system shutdown due to the electric outage of the mouse facility.

’’ cassette drives Cry1 expression by promoter of Cry1 gene and intronic RRE

is swapped to SV40 promoter and the sequences of intronic RRE are mutated.

y confirmations, summarized in TableS6. AS, antisense, pA, poly-A tail; S, sense.

e cassette in sense (S) or antisense (AS) direction, and Mut rescue cassette in

ES mice with Cry1�/�:Cry2�/� strain. The offspring harboring the Cry1-rescue

ythmicity.

s average ± SD (during DD condition). The period lengths and gene-targeting
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Figure 4. The Phenotype Analysis of KO-Rescue ES Mice

Representative actograms of a Cry1�/�:Cry2�/� mouse rescued with indicated mutant Cry1 in anti-sense direction, exhibiting near-wild-type period length (A),

shorter period length (B), longer period (C), arrhythmic dominant-short phenotype (D), or arrhythmic hyporepression phenotype (E) in Cry1�/�:Cry2�/� MEF

rescue experiment shown in Figure 1. All mutant CRY1-rescued ESmouse lines analyzed in this study except for mutants shown in Figures 5C–5E are shown. The

period lengths and gene-targeting conditions are summarized in Table S7.

See also Table S7.
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Figure 5. The Circadian Phenotype of KO-

Rescue ES Mice

(A) Summary of period in behavioral rhythmicity. The

representative behavioral plots are shown in Figure 4

and Figures 5B–5D. The behavioral period in constant

darkness condition was calculated and shown as

average ± SD. The period (or, categories in arrhythmic

mutants) of molecular oscillation recorded in rescued

MEF (i.e., results shown in Figure 1D) is plotted against

the period of behavioral rhythmicity in rescued mice.

Mutants shown in red are arrhythmic or show unstable

period in rescued mice.

(B) For each mutant that was rhythmic both in rescued

MEF and rescued mice, the period lengths of MEF and

mice were compared.

(C) A representative actogram of a Cry1�/�:Cry2�/�

mouse rescued with S261A mutant CRY1.

(D) A representative actogram of a Cry1�/�:Cry2�/�

mouse rescued with N393A mutant CRY1.

(E) Top: a representative actogram of a Cry1�/�:Cry2�/�

mouse rescued with S404D mutant CRY1. Because the

period lengths of behavioral rhythmicity are unstable

in this mutant line, the recoding was extended over

4 weeks in constant darkness. Bottom: the period was

calculated for the first 2 weeks and the second 2 weeks

of constant darkness condition for each S404D-rescued

mouse.

(F) Interaction of CRY1 mutant and PER2 was quantified

by co-immunoprecipitation (IP) andmass spectrometry-

based quantification. Three different PER2-derived

peptides were quantified in two independent experi-

ments. Data are shown as box-and-whisker plot and

individual quantified values; each circle indicates the

quantified value of peptide derived from PER2 protein

normalized by the amount of CRY1 protein.

**p < 0.05; p > 0.1, Student’s t test compared with WT.

See also Table S7.
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Figure 6. Causality of IncreasedCRY1 Turn-

over Rate to Circadian Period Shortening

(A) Circadian period of each mutant CRY1 in

rescued MEF (data shown in Figure 1D) was

plotted against protein half-life (average ± SD).

Mutants with significantly shorter or longer half-life

(p < 0.1, Student’s t test compared with wild-type)

are shown in blue, and mutants with similar half-

life compared with wild-type are shown in red.

‘‘Arrhythmic hyper-repression’’ mutants were not

plotted. See Figure S4A for the half-life of each

mutants and Figure S4C for the linear regression.

(B) Relative amplitude of circadian rhythmicity

in rescued MEF (data shown in Figure 1D) was

plotted against relative activity of P(Per2)-dLuc

co-transfected with each mutant CRY1 (average ±

SD). Mutants with significantly higher or lower

repression activity (p < 0.1, Student’s t test

compared with wild-type) are shown in blue, and

mutants with similar repression activity compared

with wild-type are shown in red. See Figure S4B

for the half-life of each mutants and Figure S4C

for the linear regression.

(C) Scheme of the construction of CRY1-mAID

system. Tir1 was expressed under constitutive

(non-circadian) promoter. A fragment of the orig-

inal AID/IAA17 tag called mini-AID (mAID) (Kubota

et al., 2013) was fused with the C-terminal of

CRY1. AID-tagged Cry1 was expressed under

the Cry1-rescue promoter. Addition of NAA in-

duces the degradation of AID-tagged CRY1. Ub,

ubiquitin.

(D) Circadian oscillation of rescued MEF with AID-

tagged CRY1 in the presence of TIR1. The exper-

iments were carried out as in Figure 1 except for

that indicated amount of NAA was added to the

medium. The upper half shows the normalized

signal of P(Per2)-dLuc signal, and the lower half is

the detrended oscillation signal.

(E) Changes in the oscillation period of CRY1-

mAID rescued MEF. The period length of each

experiment was compared with the average

period of CRY1-mAID rescued MEF in the pres-

ence of TIR and 0 mg/mL of NAA.

(F) Changes in the oscillation amplitude of CRY1-

mAID rescued MEF. The relative amplitude of

each experiment was compared with the average

amplitude of CRY1-mAID rescued MEF in the

presence of TIR and 0 mg/mL of NAA.

(G) Correlation of amplitude reduction and period

shortening by induction of CRY1-mAID degra-

dation.

See also Figure S4.
T249D, and S285D) had decreased protein stability, if any,

similar to the other short mutants. Hence, it is difficult to quanti-

tatively explain the remarkable period shortening observed in

ES mice only by decreased CRY1 protein stability.

Causality of Increased CRY1 Turnover Rate to Circadian
Period Shortening
The finding ofmutants that alter the circadian periodwithmodest

effect on the CRY1 stability challenges the canonical relationship

between CRY1 degradation and period shortening. To ask the
causality between them, we tried to induce targeted and artificial

proteolysis of CRY1 by using Auxin-induced degradation (AID)

system (Figure 6C) (Kubota et al., 2013; Nishimura et al., 2009):

the AID-tag is recognized by TIR1 protein, a subunit of

SCF ubiquitin ligase, in the presence of auxin, leading to the

proteasome-mediated degradation of AID-tagged protein in an

auxin’s dose-dependent manner. The taggedCRY1 successfully

repressed the E-box-mediated transcription and that activity is

reduced by the addition of synthetic auxin (naphthaleneacetic

acid [NAA]) in a dose-dependent and TIR-dependent manner
Molecular Cell 65, 176–190, January 5, 2017 185
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Figure 7. P Loop and C-lid as Period-

Determining Domains of CRY1 Protein

(A) Crystal structure of Mm CRY2 bound to FAD

analog KL001 (PDB: 4MLP) (Nangle et al., 2013).

Note that S404 is not conserved in Mm CRY2

(substituted with alanine).

(B) A close-up view of the P loop and surrounding

regions.

(C) A close-up view of the C-lid and surrounding

regions. Two phenylalanine residues (F409, F410)

on the C-lid are sterically close to an R367 residue

that penetrates into the C-lid loop structure.

(D) Circadian period lengths of indicated CRY1

mutants. The arrhythmic mutants were classified

based on the phenotype of NIH 3T3 overexpressed

with the mutant (shown in Figure S5F). The experi-

ments were carried out as in Figure 1.

**p < 0.05; Student’s t test compared with WT. The

period lengths are shown as average ± SD and

summarized in Table S8.

(E) Protein half-life of indicated CRY1 mutants

shown as average ± SD. The experiments were

carried out as in Figure 6. **p < 0.05, n.s. p > 0.1;

Student’s t test compared with WT.

(F) Proteolysis-dependent and -independent circa-

dian-period determination by CRY1.

See also Table S8 and Figures S5 and S6.
(Figures S4D–S4F). Furthermore, tagged CRY1 rescued the

circadian rhythmicity in the Cry1�/�:Cry2�/� MEF (Figure 6D).

The period of rescued rhythmicity became shorter in a NAA-

dose-dependent manner (Figures 6D and 6E), confirming the

causal effect of CRY1 degradation on circadian period short-

ening. The amplitude of oscillating reporter signal was also
186 Molecular Cell 65, 176–190, January 5, 2017
decreased by the induction of CRY1 prote-

olysis (Figure 6F), resulting in a linear cor-

relation between period and amplitude

(Figure 6G). The result of induced CRY1

degradation suggest that the canonical

relationships between circadian period

and CRY1’s half-life is applicable to

circadian phenotype several CRY1 mu-

tants, although such relationships cannot

explain some exceptional mutants with

drastic effects on the circadian period

and rhythmicity.

P Loop and C-lid as Period-
Determining Domains of CRY1
Protein
We then mapped the positions of such

exceptional mutation on the reported

CRY structures. Note that CRY2 structure

bound with KL001 was used in this struc-

tural analysis because P loop structure

was determined only in CRY2 but not

in CRY1 (Nangle et al., 2013). Residue

position number corresponding to CRY1

was used because of the consistency
with our mutagenesis assay. We focused on residues that,

when mutated, result in markedly long-period phenotypes

(HHY, S492D, S492A, and S243A), arrhythmic dominant-short

phenotypes (S243D, S247D, T249D, and S285D) or arrhythmic

hyperrepression phenotypes (S404D and N393A). Figure 7A

indicates that all the above-listed residues are located around



the co-factor (FAD/KL001) binding pocket of the CRY protein,

especially the two loop domain called the P loop and C-lid.

H355, H359, and Y413 are located near the co-factor (FAD/

KL001) binding pocket and can interact with a potential co-fac-

tor. Consistently, KL001 had no detectable effect onHHYmutant

(Figure S5A). Although S492 has no direct interaction with C-lid

domain or co-factor binding pocket, phosphorylation of S492

residue might affect the structure of downstream, non-crystal-

ized C-terminal domain. On the basis of these arrangement

of non-canonical period-determining residues, we anticipated

that the P loop and C-lid, both of which are suggested to be flex-

ible domain (Figure S5B) (Czarna et al., 2013; Nangle et al., 2013,

2014; Schmalen et al., 2014; Xing et al., 2013), are the core do-

mains of CRY1 in circadian-period determination. If these do-

mains are responsible for period determination without changing

CRY1 protein stability, it may be possible that structure-guided

engineering of CRY1 mutation on these domain structures

recapitulates proteolysis-independent period modulation.

To test this, we focused on the arginine triplet on the P loop

domain (i.e., R227, R236, and R238) (Figures 7B and S5C)

because the positively charged and surface-oriented arginine

triplet may be involved in the interaction between CRY1 and other

factors. We also focused on R367 and F409/F410 for C-lid

structure because the interaction of these residues may restrict

the flexibility of the C-lid (Figures 7C and S5D). As expected,

mutation on each residue altered circadian oscillation of CRY1-

rescued Cry1�/�:Cry2�/� MEF (Figure 7D). The alanine substitu-

tion of each arginine triplet resulted in a short-period phenotype

with most drastic effect for the R227A mutation. The arrhythmic

dominant-short phenotype of R227A was partially attenuated

when the positively charged residue lysine substituted the posi-

tion (R227K). In contrast, alanine substitution of the F409 and

F410 at C-lid and the same substitution of their contact partner

R367 resulted in arrhythmic hyper-repression phenotype (Figures

7D, S5E, and S5F; Table S8). When lysine substituted the R367

position, the R367K mutant had a significantly longer phenotype.

We thenpickedupR227AandR367Kmutants for P loopandC-lid

domain, respectively, and investigated the protein stability of

thesemutants. As expected, Figure 7E shows that the protein sta-

bility of these mutants was not significantly changed compared

with wild-type. The longer half-life of S588D mutant as observed

in Figure 6A confirmed the robustness of this assay. The involve-

mentofFAD-bindingpocketandsurrounding regions in theperiod

determination are also supported by the result showing that

cysteine residues involved in the disulfide bond at C-lid terminal

(Schmalen et al., 2014) and residues mutated in Drosophila CRY

(cryb) (Stanewsky et al., 1998) are also important for the circa-

dian-period determination in mammalian CRY1 (Figures S6B

andS6C). Taken together, thesedatasuggest that structural/elec-

trostatic properties of P loop and C-lid are important for proteoly-

sis-independent circadian-period determination (Figure 7F).

DISCUSSION

Multisite Phosphorylation of CRY1 Can Serve as a
Cumulative Timer
The linear and additive effect of phosphorylation mutants (Fig-

ure 2) implies that CRY1 plays a role as a cumulative timer. Pre-
vious studies as well as database/algorithm-based prediction

provide (Table S4) various possible kinases responsible for

the phosphorylation of CRY1. The multisite phosphorylation

may integrate internal information (e.g., spent time) and

external information (e.g., environmental signals) and converts

them into circadian-period modulation. Indeed, we identified

dual phosphorylated peptide near the flexible P loop (Table

S1, S243/S247). Multisite phosphorylation often occurs and

regulates flexible structures or intrinsically disordered regions.

This type of regulation was found in FRQ in Neurospora and

PER in mammals (Wright and Dyson, 2015) and may be a

shared design principle for the control of circadian time keep-

ing mechanism.

The role of phosphorylation may be different depending

on the target site; in our assay, S243 is the only residue,

of which phosphorylation-mimetic and non-phosphorylation-

mimetic mutants have opposite effect in period length, suggest-

ing that proper level of phosphorylation on this site and/or a

timely phosphorylation along with the circadian cycle is impor-

tant for the circadian time keeping. There are other classes of

phosphorylation site, in which only either the phosphorylation-

mimetic or the non-phosphorylation-mimetic mutant had a sig-

nificant effect on the circadian period (e.g., S71). This may be

related to the phosphorylation level of each site. If one site is

constitutively phosphorylated during the circadian cycle, then

non-phosphorylation-mimetic mutation rather than phosphory-

lation-mimetic one would cause a severe effect. Contrary, if

one site is rarely phosphorylated, then phosphorylation-mimetic

mutation may cause a greater effect. For the mutants showing

that both of alanine and aspartic acid substitution cause the

similar effect on period length (e.g., T131), it is likely that the

exact composition of side chain as well as negative charge

might be important for the circadian phenotype. To validate

these predictions in future studies, quantitative measurement

of phosphorylation at each site, efficient detection of multi-

phosphorylated peptides, and identification of responsible

kinases/phosphatases will be important.

CRY1-PER2 Interaction Confers a Robust Circadian
Rhythmicity in Mice
Previous study indicated that disulfide bond between C363

and C412 residues in CRY1 controls CRY1’s affinity to PER2

protein, and mutation on either one of two cysteine residues

increased the CRY1-PER2 interaction (Schmalen et al.,

2014). However, our study showed that C363A mutation re-

sulted in period lengthening while C412A mutation resulted

in period shortening (Figure S6B). Thus, the phenotype of

circadian period appears to be not matched with the pheno-

type of CRY1-PER2 interaction. This suggests that the pheno-

type of circadian period is caused by altered structure of

mutated residues not simply by the breakage of disulfide

bond. This result also implies that the importance of CRY1-

PER2 interaction for circadian clockworks may lie in aspects

other than period-determination processes. Notably, our KO-

rescue ES mouse analyses revealed the role of CRY1-PER2

interaction for the robust circadian rhythmicity in vivo rather

than period-determination and CRY1’s repression activity

(Figure 5).
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Convergence of Period Length toward 24 hr in Mice
It has been reported that period variance of SCN and organism

behavior is smaller than that of MEFs and dispersed SCN cells

(Liu et al., 2007; Welsh et al., 2004). Our KO-rescue ES mouse

analyses further revealed that period difference of CRY1mutants

observed inMEFs converged toward 24 hr in ESmice (Figure 5B).

It is difficult to attribute the conversion effect toCry1-driven feed-

back loop because we created long and short periodmutants, all

of which directly targeted the CRY1 molecule. Despite this, the

periods of short mutants measured in MEFs were lengthened

in ES mice, and the periods of long mutants measured in MEFs

were shortened in ES mice. Thus, it is suggested that the molec-

ular/cellular nature of convergence-to-24 hr-effect, not just the

reduction of variance, is not related to Cry1 gene. Interestingly,

Ono et al. demonstrated that circadian oscillation can be

observed in Cry1�/�:Cry2�/� mice in a limited developmental

condition (Ono et al., 2013), suggesting the presence of Cry1/

2-independent circadian oscillator. Our CRY1 mutagenesis

assay revealed that CRY1-PER2 interaction is particularly impor-

tant for robust rhythmicity in mice. Phosphorylation of PER2 by

CKId/ε have several intriguing features such as temperature-

compensation (Isojima et al., 2009) and reciprocal regulation of

CKIε (Qin et al., 2015) that have a potential to create phosphor-

ylation-based autonomous oscillators (Jolley et al., 2012). These

features imply that part of the mammalian circadian rhythmicity

might rely upon Per2-driven oscillators. Therefore, one possible

perspective is that Per2-driven oscillator couples with Cry1-

driven oscillator to confer a near 24-hr rhythmicity.

Circadian-Period Determination by CRY1 Degradation-
Dependent and -Independent Mechanisms
Our study suggests that the P loop and C-lid are responsible for

the protein-stability-independent period determination. Previous

studies revealed that C-lid forms an interface between CRY1/2

and PER2 (Figure S6D) (Nangle et al., 2014; Schmalen et al.,

2014) or FBXL3 (Xing et al., 2013), and the C-lid structure is

affected by the binding of these proteins (Figure S6E). P loop is

not directly involved in the interface between PER2 or FBXL3,

but it may affect the interaction through creating the co-factor

binding pocket. Indeed, residues ofCRY1affecting the interaction

with PER2 identified in this study locate around co-factor binding

pocket (hence surroundingC-lid orP loop) (FigureS6D). However,

our study suggests that the period-determinationmechanism can

be independent from CRY1 stability that is regulated through

FBXL3 and PER2 competition. Thus, it is also possible that the

C-lidandP loopmay regulatecircadianperiod through the interac-

tionwith other proteins becauseCRYproteins function in a 2-MDa

complex composed of tens of proteins (Brown et al., 2005; Duong

et al., 2011; Kimet al., 2015). In summary, this study proposes that

mammalian circadian period is controlled not only by the turnover

rate of CRY1, a behavior determined by the quantity ofmolecules,

but also by the quality of each molecule characterized by the

structure of flexible loops and phosphorylation status.

EXPERIMENTAL PROCEDURES

Detailed information was described in Supplemental Experimental

Procedures.
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Circadian Reporter Assay using Cry1–/–:Cry2–/– MEFs and NIH 3T3

Cells

Real-time monitoring of circadian reporter using culture cells was performed

as previously described (Ukai-Tadenuma et al., 2011). In brief, cells were trans-

fected with pGL3-P(Per2)-dLuc reporter plasmid and each Cry1 gene expres-

sion vector. The cells were synchronized by adding forskolin to the medium.

The bioluminescence was monitored at 30�C.

Generation of ES Mice and Behavior Analysis

An ESC clone was injected into 8-cell-stage ICR embryos to generate

ES mice (Kiyonari et al., 2010). C57BL/6 wild-type mice (9 weeks

old), Cry1�/�:Cry2�/� mice (12 weeks old), ES mice (7-10 weeks old), F1

animals of WT rescue (AS) (10 weeks old) were entrained to a light-

12 hr:dark-12 hr cycle for at least 2 weeks and then the locomotor activity

was collected in the light-dark condition for 1-2 weeks and then in the

dark-dark (DD) condition for another 2-4 weeks. All experimental proced-

ures and housing conditions involving animals and their care were

approved the Institutional Animal Care and Use Committee of RIKEN

Kobe Branch.

Analysis of CRY1 Half-Life and Transcription-Repression Activity

Vector construct that express Cry1::luciferase under the non-circadian CMV

promoter (pMU2-Cry1::luciferase) was transfected to Cry1�/�:Cry2�/� MEFs.

Luciferase signal was chased after the addition of 400 mg/mL of cycloheximide

to the medium. Transcription repression assay was performed as described

previously (Khan et al., 2012).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and eight tables and can be found with this article online at

http://dx.doi.org/10.1016/j.molcel.2016.11.022.
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Figure S1 related to Figure 1. Phosphorylation sites and conserved canonical 

electron-transfer residues in CRY1. 

(A) Scheme for the LC-MS based identification of phosphorylation residues in CRY1. 

CRY1 was over-expressed under the CMV promoter in 293T cells. Assay condition 

and identified peptide list are summarized in Table S1 and Supplemental 

Experimental Procedures. TPA: 12-O-tetradecanoylphorbol 13-acetate. IMAC: 

immobilized metal affinity chromatography. 

(B) A canonical electron-transfer pathway in 6-4 photolyase of Drosophila 

melanogaster (PDB 3CVY) (Maul et al., 2008). Green; damaged DNA substrate. Red; 

Co-factor FAD. Cyan; residues involved in a canonical-transfer pathway. During the 

photoexcitation of flavin chromophore at 6-4 photolyase, tryptophan triplet (W320, 

W374, and W397 as corresponding residues in mice CRY1) and histidine/tyrosine 

triplet (H355, H359, and Y413 in mice CRY1) are thought to mediate electron transfer 

to excite the chromophore and damaged DNA substrate (Aubert et al., 2000; Hitomi 

et al., 2001; Maul et al., 2008; Sadeghian et al., 2010). The photoactivated 

chromophore may be stabilized through the interaction with asparagine reside (N393 

in mice CRY1) (Hitomi et al., 2009; Li et al., 2010; Liu et al., 2011). Note that all 

residues are conserved in mouse CRY1, and the amino acid numbers are shown 

based on mouse CRY1. 

(C) Examples of arrhythmic cellular phenotype in CRY1-rescued Cry1-/-:Cry2-/- MEF 

(left). The arrhythmic phenotype was further classified based on the phenotype when 

the same CRY1-rescue and P(Per2)-dLuc plasmids were co-transfected into NIH 3T3 

cells (right). For the experiments using NIH 3T3 cells in this and the other figures, the 

luciferase signal was normalized such that the maximum value of wild-type CRY1’s 

time course data in each experiment is to be one, and shown as average (solid line) ± 

SD (shade) (n > 4, taken from at least two independent experiments).  
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Figure S2 related to Figure 2. Evolutional conservation of S243 and neighboring 

phosphorylation residues in CRY1. 

(A) Quantification of phosphorylated peptides derived from CRY1. CRY1 were 

overexpressed in 293T cells in the absence or presence of 100 µM SP600125, or co-

overexpression of CKIδ. The ratio of peptide with phosphorylation at indicated 

residues to unphosphorylated peptide was quantified by triple quadrupole mass 

spectrometer using isotopically-labelled synthetic peptides as internal controls. The 

ratio of phosphorylated S243 to non-phosphorylated one was decreased by the 

addition of potent CKIδ/ε inhibitor SP600125 (Isojima et al., 2009) and increased by 

the co-expression of CKIδ. SP600125 treatment also decreased the phosphorylation 

level of S247 and T249, residues adjacent to S243 and responsible for arrhythmic 

dominant-short phenotype although the effects of CKIδ co-expression were not 

significant. The quantified values are shown as average ± SD (n = 4). ** p < 0.05, * p 

< 0.1, n.s.; p > 0.1; Student’s t-test compared with “Control”. Quantified sequences 

and quantification method are summarized in Supplemental Experimental 

Procedures and Table S5. 

(B) Sequence alignment of S243 surrounding region of cryptochrome super family. 

The alignment was conducted against all protein listed in (C). Arginine/lysine (R/K) at 

R238 position and serine/threonine (S/T) at S247 position are well conserved across 

many phyla. The area between these two conserved residues (shaded), S/T residue 

are colored in blue and aspartic acid/glutamic acid are colored in red. Mm: Mus 

musculus. Hs: Homo sapiens. At: Arabidopsis thaliana. Os: Oryza sativa. At: 

Arabidopsis thaliana. Dm: Drosophila melanogaster. Ag: Anopheles gambiae. Cq: 

Culex quinquefasciatus. Xl: Xenopus laevis. Vp: Vibrio parahaemolyticus. Ec: 

Escherichia coli. Nc. Neurospora crassa. 

(C) Amino acid conservation of S243 surrounding region displayed in the Sequence 

Logo. S243 is located in the middle of evolutionally well-conserved R/K at R238 

position of CRY1 and also well-conserved S/T at S247 position of CRY1. Between 



these well-conserved residues, negatively-charged aspartic acid and glutamic acid 

(D/E) often appear. 

(D) Phylogenetic tree of the cryptochrome superfamily. For each protein, residues 

aligned within the 239 - 246 position in Mm CRY1 (brown shaded in (B)) were analysed. 

Blue; at least one S or T residue is involved in the 239 - 246 region, and no D, or E is 

involved in the region. Green; at least one S or T residue and at least one D, or E 

residue are involved in the region. Purple; the region does not involve any S, T, D, and 

E residues. Red; at least one D, or E residue is involved in the 239 - 246 region, and 

no S or T is involved in the region. The phylogenetic tree shows that mammalian 

cryptochromes have S but no D/E within the 239 - 246 position in Mm CRY1. Oh the 

other hand, most of the other cryptochrome superfamily proteins have D/E but no S/T 

within this area. If the role of phosphorylation for regulating the protein function largely 

relies on its negative charge rather than specific surface structure of specific reside 

position, then phosphorylation within local area similarly plays a role regardless of the 

exact position (Nash et al., 2001; Orlicky et al., 2003). Therefore, it the view of 

electrostatic condition, phoshorylation of S243 might mimic the protein surface of other 

cryptochrome superfamily proteins. 
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Figure S3 related to Figure 3. TALEN-based high-efficient establishment of 

knock-in ES mouse 

(A) Schematic of the TALEN-targeting site at the ROSA26. The nucleotide sequence 

of the target site containing the TALEN recognition sites (labelled in magenta) is shown. 

XbaI-digestion site sequence is underlined. Corresponding regions for 3’-terminal of 5’ 

homology arm and 5’-terminal of 3’ homology arm of targeting vector are indicated as 

green lines.  

(B) Schematic of three different targeting vector constructs for assays shown in C and 

D. Each vector includes 5’ and 3’ homology arm (green lines) of the different length 

each. Arm length is given in kilo base pairs. Gene for targeting is shown as a white 

box. The back-bone vector is illustrated as a loop. A linearization site at the flanking 

site of 5’ homology arm is indicated by an arrow. Puromycin-resistant gene was 

knocked-into the ROSA26 locus so that the efficiency of targeting was quantified as 

the number of survived colonies in the presence of puromycin. 

(C) Efficiency of correct targeting of linearized/circular targeting vector. 

Linearized/circular targeting vector were transfected with/without TALEN. Length of 5’ 

and 3’ homology arm of targeting vector is 4 kbp. Targeted integration at the ROSA26 

were assayed by PCR for over twelve puromycin-resistant colonies (each experiment 

contains 2 samples; n = 2). TALEN-based targeting on the ROSA26 locus significantly 

increased the efficiency of genome editing up to almost 90% with circular vector as 

reported in zinc finger nuclease based targeting (Orlando et al., 2010). 

(D) Efficiency of correct targeting of three different targeting vectors. Circular targeting 

vectors (illustrated in (B)) were transfected with TALEN. Targeted integration at the 

ROSA26 assayed by PCR for over 12 puromycin-resistant colonies for each 

experiments. Average ± SEM (error bar) of three independent experiments are shown. 

We concluded that the optimal length was from 4 kbp to 8 kbp. Thus, in the KO-rescue 

of ES mice experiments, we chose 8 kbp length for the 5’ homology arm of ROSA26 



locus and 4 kbp for the 3’ homology arm of ROSA26 locus as reported previously (Abe 

et al., 2011). 

(E) Three-days cultured HK3i ESCs (Kiyonari et al., 2010) under with (left) or without 

(right) feeder cell condition. Scale bar, 200 µm.  

(F) Efficiency of contribution for chimeric embryos of ESCs cultured under with or 

without feeder cells condition. HK3i ESCs were injected into 8-cell embryos after ten-

passages. The efficiency of contribution was judged with a coat color. That feeder-free 

culture condition can gain ESCs that kept comparable efficiency to contribute chimeric 

embryos with ESCs in classical culture condition with feeder cells. 
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Figure S4 related to Figure 6. Correlation between CRY1 half-life and circadian 

period length. 

(A) Protein half-life of indicated mutant/wild-type CRY1 were plotted. A vector plasmid 

expressing CRY1::luciferase fusion protein was transfected into Cry1-/-:Cry2-/- MEFs. 

The luciferase signal was then chased upon addition of 400 µg/mL cycloheximide. 

Data are shown as average ± SD (n = 4). ** p < 0.05, * p < 0.1, n.s.; p > 0.1; Student’s 

t-test compared with WT. Dark-blue bars; mutants with significantly reduced protein 

half-life. Ligh-blue bars; mutants with protein half-life similar to that of wild type. Green 

bars; mutants with significantly increased protein half-life. WW; W374A:W397A, 

WWW; W320A:W374A:W397A, HHY; H355A:H359A:Y413A. 

(B) E-box repression activity of indicated mutant/wild-type CRY1 are plotted. A vector 

plasmid expressing CRY1, P(Per2)-dLuc reporter, and a plasmid expressing Renilla 

luciferase (RLuc) were co-transfected to Cry1-/-:Cry2-/- MEFs. The signal of luciferase 

normalized to the signal of RLuc are plotted. Data are shown as average ± SD (n = 

4~8). ** p < 0.05, * p < 0.1, n.s.; p > 0.1; Student’s t-test compared with WT. Dark-blue 

bars; mutants with significantly increased transcription-repression activity. Ligh-blue 

bars; mutants with transcription-repression activity similar to that of wild type. Green 

bars; mutants with significantly increased transcription-repression activity. 

(C) Simple regression analysis for protein half-life (A), repression activity (B), circadian 

oscillation period and amplitude (shown in Figure 1D). For CRY1 mutants that have 

significant change in their half-life, the correlation of CRY1 half-life with circadian 

period or circadian amplitude observed in the assay of KO-rescue MEFs was 

calculated. Similarly, for CRY1 mutants with significantly altered transcription-

repression activity, the correlation of CRY1 repression activity with circadian period or 

circadian amplitude was calculated. Note that arrhythmic mutants were excluded from 

the analysis including oscillation period because the exact period lengths were 

undetermined, and S588D mutant was excluded from the analysis including protein 

half-life because this mutant shows exceptionally long half-life, though including the 



S588D for this correlation analysis does not change our conclusion (i.e. significant 

correlation between period and half-life). Solid line: regression line with two-sided 95% 

confidence interval. P-value of F-test and adjusted R-squared value are shown in 

upper right. 

(D) E-box repression activity of AID-tagged CRY1. The experiment was carried out 

same as in (B) but using a plasmid expressing CRY1-mAID, and a plasmid expressing 

TIR1 for the indicated assay conditions. 

(E) Baseline response of P(Per2)-dLuc reporter signal to the addition of NAA. The 

reporter plasmid, plasmid expressing CRY1-mAID and TIR1 were transfected into 

Cry1-/-:Cry2-/- MEFs as indicated in Figure 6C. To monitor the baseline level of 

luciferase reporter, forskolin stimulation was not applied in this experiment (i.e. the 

cells were circadian-asynchronous). Four days after the medium exchange, NAA was 

added; and then signal at the first trough after NAA addition was quantified (red dotted 

line) and normalized to the signal at the NAA addition (black dotted line). The plot 

shows a representative result with the addition of 15 μg/mL NAA. 

(F) The normalized baseline signal as analysed in (E) in various conditions. The 

baseline signal responded to NAA in a dose-dependent manner in the presence of 

TIR1 and AID-tagged CRY1. 

  



Figure S5: Ode et al.
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Figure S5 related to Figure 7. Effect on circadian period by the modulation of 

residues around co-factor binding pocket. 

(A) The HHY mutant CRY1 has reduced sensitivity to KL001. Circadian rhythmicity 

of Cry1-/-:Cry2-/- MEF rescued by indicated wild-type/mutant CRY1 was monitored in 

the presence of indicated concentration of KL001. KL001 significantly affected 

circadian period of wild type and long-period S243A mutant. In contrast, KL001 had 

no detectable effect on HHY mutant. Quantified period plot (left) and circadian 

oscillation (right) were shown as average ± SD (n = 4). ** p < 0.05, n.s. p > 0.1; 

Student’s t-test compared with the period in the absence of KL001.  

(B) The B-factor (temperature factor) of alpha carbon atoms in published mammalian 

CRY1 crystal structures (Czarna et al., 2013; Nangle et al., 2013; Nangle et al., 2014; 

Schmalen et al., 2014; Xing et al., 2013). Green bars indicate p-loop (R227 – S247 in 

Mm CRY1; R245 – S265 in Mm CRY2) and orange bars indicate C-lid (S404 – Y413 

in Mm CRY1; A422 – Y431 in Mm CRY2). The B-factor of these loops are higher than 

other domains of CRY protein, or the structure of P-loop domain was partially not 

determined (shaded in blue) in several structures. 

(C) Upper half represents Mm CRY2 structure colored based on p-loop (green), C-lid 

(orange) and phosphorylated residues responsible for the arrhythmic dominant-short 

phenotype (cyan). Arginine triplet on p-loop are also indicated. Bottom half represents 

the Mm CRY2 surface colored based on electrostatic potential in a linear color ramp 

from -6.0 kT (red) to 6.0 kT (blue). The protein surface is based on Mm CRY2-KL001 

structure PDB: 4MLP (Nangle et al., 2013). Note that all amino acid residue number 

are based on Mm CRY1 in this and following panels. 

(D) Structural alteration of C-lid upon co-factor binding. C-lid (orange), R367 residue 

(cyan) and their up/down stream helices are shown. Compared with the FAD bound 

form of Mm CRY2 (PDB: 4I6G) (Xing et al., 2013), F409 and F410 residues on c-loop 

change their position to be close to R367 residue upon KL001 binding (PDB: 4MLP) 

(Nangle et al., 2013). 



(E) Circadian rhythmicity of wild-type/mutant CRY1 rescued Cry1-/-:Cry2-/- MEF. The 

quantified periods are shown in Figure 7D. The experiments were carried out same 

as in Figure 1. Note that the data for wild type on each panel are identical. 

(F) The arrhythmic mutants were expressed in NIH 3T3 for the classification of 

arrhythmic dominant-short, hyper-repression, and hypo-repression phenotypes. The 

experiments were carried out same as in Figure 1. R227A was classified as 

arrhythmic dominant-short, whereas the other three mutants were classified as 

arrhythmic hyper-repression. The classified results were also shown in Figure 7D. 

Note that the data for wild type on each panel are identical. 

  



Figure S6: Ode et al.
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Figure S6 related to Figure 7. Disulfide bond and hydrogen bond regulating the 

circadian period length. 

(A) A close-up view of FAD-binding pocket. The salt-bridge between R358 and D387 

has been shown to affect the repression of BMAL1/CLOCK activity in Mm CRY1 

(Hitomi et al., 2009) and photoreception activity of Drosophila CRY (cryb) (Stanewsky 

et al., 1998). The disulfide bridge between C363 and C412, and zinc binding of C414 

have been shown to affect Mm CRY1-Mm PER2 interaction (Schmalen et al., 2014). 

(B) Circadian rhythmicity of Cry1-/-:Cry2-/- MEF rescued by indicated wild-type/mutant 

CRY1. The quantified periods are shown in bar plot on the left. Panels on the right 

indicate circadian oscillation of rescued cells. The experiments were carried out same 

as in Figure 1. Note that the data for wild type is the same as shown in Figure S5E. 

Arrhythmic mutants were classified based on the experiments shown in (C). ** p < 

0.05; Student’s t-test compared with “WT”. The period lengths are shown as average 

± SD (n = 4) and summarized in Table S8. 

(C) The arrhythmic mutants shown in (B) were expressed in NIH 3T3 for the 

classification of arrhythmic dominant-short, hyper-repression, and hypo-repression 

phenotypes. The experiments were carried out same as in Figure 1. R358A, D387A, 

and D387N were classified as arrhythmic dominant-short. Note that the data for wild 

type is the same as shown in Figure S5F. 

(D) Crystal structure of Mm CRY2 in complex with FBXL3 (PDB 4I6J) (Xing et al., 

2013). and Mm CRY2 in complex with PER2 (PDB 4U8H) (Nangle et al., 2014). In the 

CRY2-PER2 complex, residues important for the CRY1-PER2 interaction found in 

Figure 5F are shown. 

(E) A close-up view of the C-lid and surrounding regions of CRY2 in complex with 

FBXL3 (PDB 4I6J) or PER2 (PDB 4U8H). 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Plasmid construction 

Cry1, Per2, and CKIδ used in this study were subcloned in the pMU2 vector (Ukai et 

al., 2007) as described previously (Narumi et al., 2016) and expressed under the CMV 

promoter as a FLAG-tag fusion in their N terminus (pMU2-Cry1, pMU2-Per2, and 

pMU2-CKIδ). pMU2-Cry1::luciferase was constructed by inserting the luciferase 

sequence of pGL3-basic (Promega) into the C-terminus of Cry1. A circadian reporter 

plasmid pGL3-P(Per2)-dLuc was constructed as described previously (Sato et al., 

2006). The expression vector for codon-optimized OsTir1 (Oryza sativa) was 

constructed based on pAID1.2-N vector (Kubota et al., 2013) by removing the IRES 

and AID-tag-MCS sequences from the plasmid: the pAID1.2-N was digested by using 

restriction enzymes BamHI and PvuI. The product was treated with T4 DNA 

polymerase for creating blunt ends and self-ligated to obtain pAID1.2str-P(CMV)-

OsTir1. 

 For the vector of Cry1-rescue experiment, pMU2-P(Cry1)-FLAG-(Cry1 intron 

336)-Cry1 vectors used in the original study (Ukai-Tadenuma et al., 2011) was slightly 

modified to enhance the efficiency of splicing at intronic RRE (i.e. Cry1 intron 336). To 

this end, the sequence of (Cry1 intron 336) was designed to be flanked by the donor 

and acceptor of a chimeric intron derived from pCMV-TNT (Promega), which is 

composed of 5 ́-donor site from the first intron of the human β-globin gene and the 

branch and 3 ́-acceptor site from the intron of an immunoglobulin gene heavy chain 

variable region (Bothwell et al., 1981). First, a fragment flanked by two AflII sites in the 

pMU2-MCS (Ukai et al., 2007) vector was removed. Second, the chimeric intron of 

pCMV-TNT was amplified with PCR with primers harboring I-SceI or PI-PspI sites 

(primers: 5’-

ATCGATAAGCTTGATAATTACCCTGTTATCCCTAATAAGTTGGTCGTGAGGCAC-3’ 

and 5’-

CTGCAGGAATTCGATACCCATAATACCCATAATAGCTGTTTGCCAAGAGCTGTAAT



TGAACTGGG-3’) and cloned into EcoRV site of pBluescript vector. Then, inverted 

PCR fragment of this vector (primers: 5’-TAGGTGCCTATCAGAAACGCA-3’ and 5’-

TTGGTCTTACTGACATCCACT-3’) was ligated with the Cry1 intron 336 fragment (WT 

or R1,2 mutation) amplified from pMU2-P(Cry1)-FLAG-(Cry1 intron 336)-Luc/Cry1 

vectors (PCR primers: 5’-TTATGACACAGTGTAGAAACTATG-3’ and 5’-

ACCTTTTACTACTATAAAAACGTACATG-3’). Finally, P(Cry1) and Cry1 coding 

sequences (from pMU2-P(Cry1)-FLAG-(Cry1 intron 336)-Cry1), P(SV40) (from pGL3-

basic, Promega), and the complete Cry1 intron (5’ donor - Cry1 intron 336 - 3’ 

acceptor) were ligated into KpnI/HindIII sites, PI-PspI/PI-SceI sites, KpnI/HindIII sites 

and I-SceI/PI-PspI sites of the modified pMU2-MCS vector, respectively. The final 

composition of the Cry1 rescue constructs were as follow: P(Cry1) or P(SV40) - leader 

sequence (from pCMV-TNT) - ATG - FLAG - intron (WT or R1,2 mutation) - Cry1 (WT) 

- SV40 late poly(A) (from pCMV-TNT). These plasmids were then named as pMU2-

P(Cry1)-FLAG-I/RRE-Cry1 or pMU2-P(SV40)-FLAG-I/RRE(Mut)-Cry1, respectively. 

 Site-directed mutagenesis with circular PCR followed by self-ligation of blunt-

end product was performed using Mighty Cloning Reagent Set (Blunt End) (Takara bio. 

inc., Japan). pMU2-Cry1, pMU2-Cry1::luciferase, and pMU2-P(Cry1)-FLAG-I/RRE-

Cry1 were used for the template plasmids of mutagenesis. AID-tagged Cry1 vector 

was constructed by inserting the 66-132 a.a. sequence of AID tag (from pAID1.2-N) 

into the C-terminus of Cry1 of pMU2-P(Cry1)-FLAG-I/RRE-Cry1, and called pMU2-

P(Cry1)-FLAG-I/RRE-Cry1-mAID.  

Targeting vectors of ROSA26 locus were prepared as follows: pENTR-1A 

(Invitrogen) with Puro-resistance gene cassette (pPGK-PuroR-poly A: PuroR) flanked 

by FRT sequences was prepared by the insertion of PuroR at the EcoRV site (for 

sense direction) or at the BamHI-KpnI site (for antisense direction) of the vector. Then, 

the Cry1 rescue cassettes (cut with MluI from the pMU2-P(Cry1)-FLAG-I/RRE-Cry1 

vector) were cloned into the pENTR-1A-PuroR vector at the BamHI-NotI site (for sense 

direction) or NotI-KpnI site (for antisense direction). The resulting expression vectors 



(pENTR-1A_attL1-Cry1 cassette-PuroR-attL2 for sense or pENTR-1A_attL1-reversed 

[Cry1 cassette-PuroR]-attL2 for antisense direction) were then mixed with the 

ROSA26 targeting vector, which contains the Reading Frame Cassette B from the 

Gateway Conversion System (Invitrogen) at the blunted KpnI and AscI sites, to 

perform the LR recombination reaction using the Gateway system (Abe et al., 2011; 

Susaki et al., 2014). Plasmids for a series of mutated Cry1 were constructed by 

swapping the Cry1 coding sequence between pENTR-1A_attL1-reversed [Cry1 

cassette-PuroR]-attL2 and pMU2-P(Cry1)-FLAG-I/RRE-Cry1 (mutant) using EcoRI 

and NotI. 

Targeting vectors for comparison of the effect of the arm-length of the targeting 

vector to the targeting efficiency, illustrated in Figure S3B, were constructed as 

follows: 3’ homology arms (4 kbp and 1 kbp) were amplified by PCR with forward 

primers (5’-GGCTCGATCCCTCGAGTCTAGAAGATGGGCGGGAGTCTT-3’) and 

reverse primer (5’-

CGGGAATTCGATGATATCCTCTATAGGTAGGGTTACTAGGTCA-3’ or 5’-

CGGGAATTCGATGATATCAGTAAGCAGTAATCAATACCATGTGG-3’) and inserted 

into the XhoI and EcoRV digested back-bone vector, pTVCI3 (Tainaka et al., 2014), 

by using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc. A Takara Bio Company). 

5’ homology arms (8 kbp, 4 kbp and 1kbp) were amplified by PCR with forward primers 

(5’-TAGGGATAACAGGGTAATATAGCTGGGATTACAAGCAGCACACACA-3’, 5’-

TAGGGATAACAGGGTAATATAGATTAAAAGATGGAGGAATTCATGTCAC-3’ or 5’-

TAGGGATAACAGGGTAATATAGGTACGAGTCGTGACGCTGGAAG-3’) and 

reverse primer (5’-

GCGGAGAAAGAGGTAATGAAATGGTCTAGAAAGACTGGAGTTGCAGATC-3’). 

Then those products of 1st PCR for 5’ homology arms were amplified with primers (5’-

GCAGTTACGCTAGGGATAACAGGGTAATATAG-3’ and 5’-

GATCATCTATGTCGGGTGCGGAGAAAGAGGTAATGAAATGG-3’) and inserted 

into the I-SceI and PI-SceI digested pTVCI3-Rarm by using In-Fusion HD Cloning Kit. 



The Puromycin resistance gene cassette (P(PGK)-PuroR-polyA) was inserted into I-

CeuI and PI-PspI digested pTVCI3-LRarm. 

 

Identification of phosphorylation sites in CRY1 

Cry1 was expressed in 293T cells as previously described with several modifications 

(Narumi et al., 2016). At 24 hr before transfection, 293T cells were plated at 106 cells 

per 90-mm dishes. A total of 12 μg of pMU2-Cry1, or a mixture of 6 μg pMU2-Cry1 and 

pMU2-Per2 was transfected to the 293T cells on a 90-mm dish. After 68 hr, cells were 

treated with 10 µM MG-132 or 20 nM TPA at indicated condition in Table S1. Four hr 

after the addition of the reagents, cells were collected by 0.25% trypsin–EDTA (Life 

Technologies) treatment. The cell pellets were lysed in 1 mL PTS buffer (12 mM 

sodium deoxycholate, 12 mM sodium N-lauroylsarcosinate, 50 mM NH4HCO3) 

containing Phosphatase Inhibitor Cocktail (Nacalai tesque) followed by extensive 

sonication. The cell lysates were then flash-frozen in liquid nitrogen and stored at -

80°C. For the immunoprecipitation sample, cells were collected 72 hr after the 

transfection and cell pellets were lysed in 1 mL M-PER solution (Thermo Fisher 

Scientific) containing Phosphatase Inhibitor Cocktail (Nacalai tesque)followed by 

extensive sonication. The lysate was mixed with 50 µL of anti-FLAG M2 agarose beads 

(Sigma) by rotating for 4 hr at 4°C. The beads were rinsed with 1 mL M-PER solution 

three times and then incubated with 0.1 mL of 0.1 M glycine-HCl (pH 3.5) for 10 min. 

After the gentle centrifugation, the supernatant (IP sample) was collected and mixed 

with 250 μL of modified PTS buffer. 

 Cell lysates or IP samples were enzymatically digested according to a phase-

transfer surfactant (PTS) protocol (Masuda et al., 2008). The IP sample was reduced 

(10 mM dithiothreitol at RT for 30 min) and alkylated (50 mM 2-iodoacetamide at RT 

for 30 min), and then it was diluted to 5 folds by adding 50 mM NH4HCO3 solution, 

followed by the digestion with 1 μg Lysyl Endopeptidase (LysC; Wako Pure Chemical 

Industries, Osaka, Japan). The samples were incubated for overnight at RT. The 



sample was further digested with 1 μg trypsin for 6 hr at RT. After the digestion, an 

equal volume of ethyl acetate was added to the sample, which was acidified with 0.5% 

TFA and well mixed to transfer the detergents into an organic phase. The sample was 

then centrifuged at 10,000 x g for 10 min at room temperature, and an aqueous phase 

containing peptides was collected and dried with SpeedVac (Thermo Fisher Scientific). 

The dried peptides were solubilized in 100 μL of 2% acetonitrile and 0.1% TFA, and 

applied to Fe-IMAC (Immobilized Metal Ion Affinity Chromatography) according to the 

previous report (Narumi and Tomonaga, 2016) to enrich the phophopeptides. 

 The LC-MS analyses were performed by data-dependent MS/MS with a IT-FT 

mass spectrometer (Orbitrap velos mass spectrometer, Thermo Fisher Scientific) 

equipped with an HPLC system containing a nano HPLC equipment (Advance UHPLC, 

Bruker Daltonics) and an HTC-PAL autosampler (CTC Analytics) with a trap column 

(0.3 x 5 mm, L-column, ODS, Chemicals Evaluation and Research Institute, Japan). 

An analytical sample solubilized in 5 μL of 2% acetonitrile and 0.1% TFA was loaded 

to the LC-MS system to be separated by a gradient using mobile phases A (0.5% 

acetic acid) and B (0.5% acetic acid and 80% acetonitrile) at a flow late 200 nL/min 

(Cell lysate; 5% to 35% B in 190 min, 35% to 95% B in 1 min, 95% B for 1 min, 95% 

to 5% B in 1 min and 5% B for 7 min. IP sample; 5% to 40% B in 40 min, 40% to 95% 

B in 2 min, 95% to 5% B in 1 min and 5% B for 16 min) with a home-made capillary 

column (length of 200 mm and inner diameter of 100 μm) packed with 3 μm C18 resin 

(L-column2, Chemicals Evaluation and Research Institute, Japan). The eluted 

peptides were electrosprayed (1.8-2.3 kV) and introduced into the MS equipment 

(positive ion mode, data-dependent MS/MS). The obtained raw data was subjected to 

database search with MASCOT (Matrix Science) algorithm running on Proteome 

Discoverer (Thermo Fisher Scientific).  

 



Circadian reporter assay using Cry1-/-:Cry2-/- MEF and NIH 3T3 cells 

Real time circadian reporter assays were performed as described previously (Ukai-

Tadenuma et al., 2011) with following modifications. For the assay with Cry1-/-:Cry2-/- 

MEF, the cells in 35-mm dish were transfected with 4 µg of pGL3-P(Per2)-dLuc 

reporter plasmid and 0.03 µg of pMU2-P(Cry1)-FLAG-I/RRE-Cry1 expression vector. 

For the AID-tagged CRY1 rescue assay, the plasmid mixture of 3µg pGL3-P(Per2)-

dLuc, 0.03 µg pMU2-P(Cry1)-FLAG-I/RRE-Cry1-mAID, 1 µg pAID1.2str-P(CMV)-

OsTir1 was transfected. For the assay with NIH 3T3 cells, 0.4 µg of pGL3-P(Per2)-

dLuc reporter plasmid, 0.4 µg of pMU2-P(Cry1)-FLAG-I/RRE-Cry1 expression vector, 

and 1.2 µg of pMU2-MCS vector were transfected. After 72 hr, cells were stimulated 

by exchanging media for DMEM containing 30 µM (Cry1-/-:Cry2-/- MEF) or 10 µM (NIH 

3T3) forskolin (nacalai tesque). In the AID-tagged CRY1 rescue assay, indicated 

concertation of NAA (N1641, Sigma-Aldrich) was added to the medium. 

Bioluminescence was then measured with photomultiplier detector systems (PMT-

Tron for Cry1-/-:Cry2-/- MEF experiment shown in Figure 1; LM-2400, Hamamatsu 

Photonics, for the other experiments) at 30°C. 

 From the obtained bioluminescence time series, significance of rhythmicity, 

period length, detrended signal and relative amplitude were calculated as described 

previously (Ukai-Tadenuma et al., 2011). In this study, data resulting in the statistical 

significance (p = 0, most significant; p = 1, least significant) of circadian oscillation p > 

0.05, or the data resulting in the relative amplitude below the 30% of averaged wild 

type’s relative amplitude (i.e. cutoff = 0.18 for PMT-Tron assay, 0.20 for LM-2400 

assay) was classified as “arrhythmic”. Note that period length of the exceptionally-long 

period S243A:S261A mutant was calculated as the distance between the second to 

the third peak points. The peak points were defined using the wavelet method 

implemented in R software by wmtsa package, and the results were manually 

confirmed. 

  



Prediction of kinases responsible for analyzed phosphorylation sites in CRY1 

Prediction of kinases that catalyze the phosphorylation sites analyzed in our Cry1-

/-:Cry2-/- MEF rescue assay was conducted by using GPS3.0, an updated version of 

GPS2.0 (Xue et al., 2008), running on local windows machine 

(http://gps.biocuckoo.org/), NetPhos 3.1 server 

(http://www.cbs.dtu.dk/services/NetPhos/) (Blom et al., 2004), KinasePhos2.0 server 

(http://kinasephos2.mbc.nctu.edu.tw/) (Wong et al., 2007), and Scansite 3 server 

(http://scansite3.mit.edu/), an updated version of Scansite 2 (Obenauer et al., 2003). 

 

LC-MS quantification of the target CRY1 phosphorylation. 

A CRY1 peptide (239-256), MNANSLLASPTGLSPYLR and the peptides 

phosphorylated at S243, S247, T249 or S252 were synthesized with a peptide 

synthesizer Syro Wave (Biotage) using Fmoc solid-phase chemistry. Concentrations 

of the synthesized peptide were measured by an amino group determination method 

(Fields, 1972). In order to use the peptide as heavy-labeled internal standard in an MS 

analysis, the peptides were dimethyl-labeled with isotope-labeled formaldehyde 

(13CD2O, ISOTEC) according to the previous report (Boersema et al., 2009). The 

heavy labeled peptide, which was solved in 2% acetonitrile and 0.1% TFA at 200 

pmol/μL, was stored at -80°C. 

 For the expression of CRY1, 6 μg of Cry1 vector or a mixture of 6 μg Cry1 

vector and 6 μg CKIδ vector was transfected by using 20 uL of X-tremeGENE HP 

(Roche) to the 5 x 106 293T cells on 90-mm dishes according to the manufacturer’s 

instruction. The amount of transfected plasmid was adjusted to 18 μg with empty 

vector pMU2-MCS. After 24 hr, culture medium (DMEM/10% FBS) was replaced with 

5 mL of culture medium supplemented with or without 100 µM SP600125. After 20 hr, 

medium in each dish was replaced with 5 mL of culture medium supplemented with 

200 µM MG-132. After 4 hr, cells were collected using cell scraper and were washed 

with D-PBS(-). 



The cell pellets were lysed in 1 mL of RIPA buffer (50 mM Tris-HCl pH 7.5, 0.3 M 

NaCl, 10% (v/v) glycerol, 0.5% (v/v) Triton X-100, 0.1% (v/v) NP-40, phosphatase 

inhibitor (Nacalai tesque, Japan) and protease inhibitor (Nacalai tesque, Japan)) by 

extensive sonication. The cell lysates were incubated by rotating for 20 min at 4°C, 

followed by centrifugation at 7,300 g for 15 min at 4°C. The supernatant were 

incubated with 0.1 mL of anti-FLAG M2 agarose beads (Sigma-Aldrich) with rotation 

for 1 h at 4°C. The beads collected by a gentle centrifugation (500 g for 2 min) were 

washed three times by rotating in 1.2 mL of wash buffer (20 mM Tris-HCl pH 7.5, 0.15 

M NaCl, 0.25% (v/v) NP-40). The beads were rinsed with 50 mM NH4HCO3 solution 

and then incubated with 0.1 mL of 0.1 mg / mL 3X FLAG peptide (Sigma-Aldrich) 

solved in PTS buffer for 1 h at 4°C. After the gentle centrifugation, the supernatant (IP 

sample) was collected and stored at -80°C. 

Immunoprecipitated CRY1 protein was enzymatically digested according to a 

phase-transfer surfactant (PTS) protocol (Masuda et al., 2008). The IP sample was 

reduced (10 mM TCEP at 37°C for 15 min) and alkylated (50 mM 2-iodoacetamide at 

37°C for 15 min), and then it was diluted 5 fold by adding 50 mM NH4HCO3 solution 

followed by the digestion with 1 μg Lysyl Endopeptidase (LysC; Wako Pure Chemical 

Industries, Osaka, Japan) of which the reaction was performed in REDS (AMR Inc.) 

400 W at 37°C for 20 min. The sample was further digested with 1 μg trypsin in the 

same manner. After the digestion, an equal volume of ethyl acetate was added to the 

sample, which was acidified with 0.5% TFA, and well mixed to transfer the detergents 

into an organic phase. After the centrifugation at 10,000 x g for 10 min at RT, an 

aqueous phase containing peptides was collected and dried with SpeedVac (Thermo 

Fisher Scientific). The dried peptides were solubilized in 100 μL of 2% acetonitrile and 

0.1% TFA, and the peptide mixture was trapped on a C18 pipette tip prepared as 

previously reported (Rappsilber et al., 2007), The trapped peptides were subjected to 

dimethyl-labeling procedure with formaldehyde (CH2O, Sigma) according to the 

previous report (Boersema et al., 2009). After the labeling, 150 μL of 15% acetonitrile 



and 0.1% TFA was passed through the tip to remove the excess of 3X FLAG peptide 

and then the dimethyl-labeled peptides left on the tip were eluted by 150 μL of 80% 

acetonitrile and 0.1% TFA. The eluent was mixed with heavy dimethyl-labeled peptides 

of the non-phosphorylated MNANSLLASPTGLSPYLR peptide (5 pmol) and the 4 

phosphorylated versions (100 fmol each) as the internal standard for LC-MS analysis. 

A fiftieth of the mixture was subjected to LC-MS analysis. The remaining mixture was 

applied to Fe-IMAC (Immobilized Metal Ion Affinity Chromatography) according to a 

previous report (Narumi and Tomonaga, 2016) to enrich for phophopeptides and then 

subjected to LC-MS analysis.  

 The LC-MS analyses were performed by selected reaction monitoring (SRM) 

with a triple quadruple mass spectrometer (TSQ Vantage EMR mass spectrometer, 

Thermo Fisher Scientific) equipped with a captive spray ionization source (Michrom 

Bioresources) and an HPLC system containing a nano HPLC equipment (Advance 

UHPLC, Bruker Daltonics) and an HTC-PAL autosampler (CTC Analytics) with a trap 

column (0.3 x 5 mm, L-column, ODS, Chemicals Evaluation and Research Institute, 

Japan). An analytical sample solubilized in 5 μL of 2% acetonitrile and 0.1% TFA was 

loaded to the LC-MS system to be separated by a gradient using mobile phases A 

(0.5% acetic acid) and B (0.5% acetic acid and 80% acetonitrile) at a flow late 300 

nL/min (5% to 31% B in 3 min, 31% to 35% B in 42 min, 35% to 95% B for 1 min, 95% 

B for 2 min, 95% to 5% B in 1 min and 5% B for 11 min) with a home-made capillary 

column (length of 200 mm and inner diameter of 100 μm) packed with 2 μm C18 resin 

(L-column2, Chemicals Evaluation and Research Institute, Japan) and then the eluted 

peptides were electrosprayed (1.6 kV) and introduced into the MS equipment (positive 

mode, scan width of 0.002 m/z, Q1 and Q3 resolutions of 0.7 FWHM, a cycle time of 

1 sec, a gas pressure of 1.8 mTorr). SRM transitions to monitor the target peptides are 

shown in a Table S5. From the obtained raw data, SRM chromatograms for target 

peptides were extracted using Qual Browser of Xcaliber 2.2 (Thermo Fisher Scientific) 

to obtain peak areas corresponding to target peptides. The amounts of the target 



peptides in a sample were determined by dividing the peak areas of the peptides 

derived from CRY1 by that of the corresponding internal standards. 

 

Culture of ESCs 

A conventional on-feeder culture of ESCs are as described previously (Abe et al., 

2011; Kiyonari et al., 2010). The Cry1-/-:Cry2-/- mouse ESCs were established from 

blastocyst of Cry1-/-:Cry2-/- mouse (van der Horst et al., 1999) in 3i medium culture 

condition as described previously (Kiyonari et al., 2010), and their ES mouse 

production ability were qualified by injection into 8-cell-stage ICR embryos to select 

clones for further analysis. Optimized feeder-free culture condition is as below; before 

beginning cultivation, surface of BD PURECoatTM amine dishes were exposed to 

medium which contain LIF plus 6-bromoindirubin-30-oxime (BIO) (Sato et al., 2009) 

for more than 5 hr at 37°C with 5% CO2. ESCs were cultured in 3i medium (Clontech 

Laboratories, Inc. A Takara Bio Company) on the BIO/amine-coated dish without 

feeder cells at 37°C with 5% CO2. 

 

Generation of targeted ESCs 

For the conventional targeting method, the targeting vector was purified and 

introduced into the Cry1-/-:Cry2-/- mouse ESCs as described previously (Abe et al., 

2011; Kiyonari et al., 2010; Susaki et al., 2014). For the TALEN-mediated targeting, C-

terminal-truncated (+63) TALENs (Miller et al., 2011) that bind to target sequence (5'-

CTGCAACTCCAGTCTTTCTAGAAGATGGGCGGGAGTCTTCTGGGCAGGCTTA-3', 

TALEN binding sequences are indicated with italics) at the ROSA26 locus were 

designed using TALE-NT (Doyle et al., 2012). The Cry1-/-:Cry2-/- mouse ESCs (4×105 

cells) were co-transfected with 0.9 µg of circular targeting vectors and 1.2 µg each of 

TALEN-L and TALEN-R expression vector using Xfect Transfection Reagent 

(Clontech Laboratories, Inc. A Takara Bio Company). 



The homologously recombined, puro-resistant ESC clones were isolated for 

further culture and expansion. For the first screening, an aliquot of the cells was lysed 

and successful homologous recombination was detected by PCR of the 3’ homology 

arm region with a pair of primers of #1 to #4 in Figure 3C. After expansion and stock, 

the ESC genome was collected and used for further confirmation of genome integrity 

in the targeted region. For this purpose, genomic PCR was performed by using a 

series of primers annealing outside the homologous recombination arms and within 

the inserted cassettes (Figure 3C). Successful targeting in the single allele was 

confirmed by the detection of all PCR bands from WT 5’ (primers #5, 6, 9), 3’ (primers 

#2 and #7), targeted 5’ (primers #1, 5, 8, 9) and 3’ homology arm regions. Primer 

sequences used for these screenings were summarized in Table S6. 

The copy number of the inserted cassette was confirmed with a quantitative 

PCR assay using the extracted ESC genome and primers annealing to the coding 

sequences of the puro-resistance gene (forward primer: 5’ -

CTCGACATCGGCAAGGTGTG-3’ , reverse primer: 5’-

GGCCTTCCATCTGTTGCTGC-3’) , normalized to the amount of TATA-box binding 

protein gene amplification (forward primer: 5’- CCCCCTCTGCACTGAAATCA-3’, 

reverse primer: 5’-GTAGCAGCACAGAGCAAGCAA-3’) using the SYBR Premix Ex 

Taq GC (Takara #RR071A) and the ABI PRISM 7900 (Applied Biosystems) or 

LightCycler 480 II (Roche) (Susaki et al., 2014). The Puro value normalized by Tbp 

value should be one if the single copy of inserted cassette was harbored in the genome. 

Note that the PuroR cassette flanked by FRT (Figure 3C) was not removed in this 

study. The selected ESC clones were injected into 8-cell-stage ICR embryos to 

generate ES mice (Kiyonari et al., 2010). 

 

Estimation of host-cell contamination and chimerism of ES mouse 

For the initial estimation of ES mouse production ability of the Cry1-/-:Cry2-/- ESCs, 



semi-quantitative genomic PCR was performed (Figure 3B). The brain was dissected 

from sacrificed animals, frozen on a dry ice, and the hypothalamic region including the 

SCN was collected by cutting the frozen brain. The collected brain region was 

homogenized and lysed in 600 ul of lysis buffer with Proteinase K (100 mM of NaCl, 

50 mM of Tris-HCl (pH 8.0), 10 mM of EDTA, 1% of SDS, 0.6~0.7 mg/mL of Proteinase 

K) at 55°C for 1-2 hr, and the genomic DNA was purified and collected by phenol-

chloroform purification (treated with RNase in the procedure) followed by ethanol 

precipitation. To detect contaminated wild-type cells in Cry1-/-:Cry2-/- ES mice, PCR for 

Cry2 locus genotyping (wild-type allele-specific forward primer: 5’-

TACCTGCGCTTTGGATGCCTCTCC-3’, Cry2-/- allele-specific forward primer: 5’-

TCCCACTTTGTGTTCTAAGTACTGTGGT-3’, common reverse primer: 5’-

AAACCACCCATCTCTGGCTTCTCT-3’) were performed in a highly sensitive 

condition with 200 ng of the total genomic DNA and 0.7 U of KOD-FX Neo (TOYOBO). 

The expected band sizes were 210 bp for wild type amplicon and 310 bp for mutant 

amplicon, respectively. Template genome for standard were prepared by mixing 

genome of wild type ICR mouse, a strain for host embryos, and a Cry1-/-:Cry2-/- mouse 

genome, purified as above, in the indicated ratios (Figure 3A). In this condition, the 

detection limit of wild-type cell contamination was estimated as ~0.001%. Coat color 

was used for brief estimation of the chimerism in the following ES mouse production. 

 

Measurement of locomotor activity 

For monitoring locomotor activity, C57BL/6 wild-type mice (9 weeks old), Cry1-/-:Cry2-

/- mice (12 weeks old) (van der Horst et al., 1999), ES mice (7-10 weeks old), F1 

animals of WT rescue (AS) (10 weeks old) were housed in a light-dark controlling rack 

(Nippon Medical & Chemical instruments Co., LTD., Japan) combined with an infrared 

monitoring system (NS-AS01, Neuroscience inc.) (Minami et al., 2009). They were 

entrained to a light-12 h: dark-12 h cycle for at least two weeks and then the locomotor 

activity was collected in the light-dark condition for 1-2 weeks and then in the dark-



dark condition for another 2-4 weeks.  

Double-plot visualization of the collected data and calculation of chi-square 

(Refinetti et al., 2007; Sokolove and Bushell, 1978) were performed with ClockLab 

software (ActiMerics) or our own scripts implemented in Mathematica 10 software 

(Wolfram Research). For calculation of chi-square, the first two weeks in the dark-dark 

condition was used expect for the S404D mutant (Figure 5E).  

All experimental procedures and housing conditions were approved by the 

Institutional Animal Care and Use Committee of RIKEN Kobe Branch, and all of the 

animals were cared for and treated humanely in accordance with the institutional 

guidelines for experiments using animals. All mouse strains were maintained by 

crossing onto a C57BL/6 background. 

 

Co-immunoprecipitation and quantification of CRY1-PER2 complex 

At 24 hr before transfection, 293T cells were plated at 1 x 105 cells per 35-mm dishes. 

A mixture of 1 μg of pMU2-Cry1 (wild type or mutant series shown in Figure 5F) and 

1 μg of pcDNA3-Myc-Per2 was then transfected to the 293T cells. After 48 hr, cells 

were collected by scraping in D-PBS(-). The cell pellet was lysed in M-PER solution 

(Thermo Fisher Scientific) followed by extensive sonication. The lysate was mixed with 

20 µL of anti-FLAG M2 agarose beads (Sigma-Aldrich) by rotating for 1 hr at 4°C. The 

beads were rinsed with 1 mL M-PER and mixed with 100 uL of PTS buffer. The 

immuno-precipitants including beads were enzymatically digested as written in above 

section “Identification of phosphorylation sites in CRY1”. The dried peptides were 

solubilized in 200 μL of 2% acetonitrile and 0.1% TFA. 100 μL of peptide mixture was 

taken from each wild-type/mutant CRY1 condition and mixed (“mixture” sample). The 

remaining 100 μL of peptide mixture for each wild-type/mutant CRY1 condition was 

called “individual” sample. The peptide samples were trapped on a C18 pipette tip 

prepared as previously reported (Rappsilber et al., 2007), followed by dimethyl-



labeling according to the previous report (Boersema et al., 2009). Formaldehyde 

(CH2O, Sigma) was used to label the mixture sample (“light-label”), and isotope-

labeled formaldehyde (13CD2O, ISOTEC) was used to label the individual samples 

(“heavy-label”). The dimethyl-labeled peptides on the tip were eluted by 80% 

acetonitrile and 0.1% TFA. Then, equal amount of eluted solution of light-labeled 

mixture sample was added to each heavy-labeled individual sample (wild-type or 

mutant CRY1 series). Thus, the relative amount of immuno-precipitants in the 

individual samples can be compared to each other by using the equally-added light-

labeled samples as a standard. 

The samples were analyzed by data-dependent MS/MS with a Q-FT mass 

spectrometer (Q-Exactive mass spectrometer, Thermo Fisher Scientific) equipped 

with an HPLC system containing a nano HPLC equipment (Advance UHPLC, Bruker 

Daltonics) and an HTC-PAL autosampler (CTC Analytics) with a trap column (0.3 x 5 

mm, L-column, ODS, Chemicals Evaluation and Research Institute, Japan). An 

analytical sample solubilized in 20 μL of 2% acetonitrile and 0.1% TFA was loaded to 

the LC-MS system to be separated by a gradient using mobile phases A (0.5% acetic 

acid) and B (0.5% acetic acid and 80% acetonitrile) at a flow late 300 nL/min (4% to 

36% B in 55 min, 36% to 95% B in 1 min, 95% B for 5 min, 95% to 4% B in 1 min and 

5% B for 8 min) with a home-made capillary column (length of 200 mm and inner 

diameter of 100 μm) packed with 2 μm C18 resin (L-column2, Chemicals Evaluation 

and Research Institute, Japan) and then the eluted peptides were electrosprayed (1.8-

2.3 kV) and introduced into the MS equipment (positive ion mode, data-dependent 

MS/MS). The obtained raw data was subjected to database search with SequestHT 

algorithm running on Proteome Discoverer (Thermo Fisher Scientific).  

The area of precursor ions corresponding to the following four peptides 

derived from CRY1 were then manually quantified by chromatogram generated with 

Xcalibur 2.2 software (Thermo Fisher Scientific): lATEAGVEVIVR (z = 2), 

YIYDPWNAPEGIQk (z = 2), AWVANFERPR (z = 2), and KLATEAGVEVIVR (z = 2). 



For each peptide, the area of heavy-labeled peptide (H) and light-labeled peptide (L) 

were quantified, and the averaged H/L ratio is used as the “relative amount of CRY1” 

involved in each “individual” sample. Similarly, the area of precursor ions 

corresponding to following three peptides derived from PER2 were also manually 

quantified: DLQAVLK (z = 2), FVEFLAPHDVSVFHSYTTPYK (z = 3), and 

ILQAGGQPFDYSPIR (z = 2). The H/L ratio of each PER2-derived peptide was 

calculated and then divided by the relative amount of CRY1. Thus, the relative value 

of (co-immonoprecipitated PER2-derived peptide) / (immunoprecipitated CRY1) could 

be obtained for each PER2 derived peptide and plotted in Figure 5F. 

 

CRY1 half-life assay 

Cry1-/-:Cry2-/- MEF were plated at 4 x 105 cells per 35-mm dish. After 24 hr, 1 µg of 

pMU2-Cry1::luciferase and 1 µg of pMU2-MCS were transfected with FuGene6 

(Promega) according to the manufacture’s instruction. After 72 hr, the medium was 

replaced with DMEM (21063-029, Life technologies) supplemented with 0.1 mM 

luciferin (Promega). Bioluminescence was measured in LM-2400 (Hamamatsu 

Photonics) at 30°C. After 96 hr, 400 µg/mL cycloheximide (Sigma-Aldrich) was added. 

Half-life of luciferase signal was calculated by fitting the time series of 0 – 300 min 

after the cycloheximide addition to the equation, 

X(𝑡) =  𝑎 ∙ 𝑒−𝑘∙𝑡  + (1 − 𝑎) 

, where X(t) is the time series of luciferase signal, and a and k are the fitting parameters. 

The half-life time is given as  

𝑡ℎ𝑎𝑙𝑓−𝑡𝑖𝑚𝑒 =  
ln (1 −

0.5

𝑎
)

𝑘
 

 



E-box repression assay 

Transcription repression assay was performed as described previously (Khan et al., 

2012) except for that 1 x 105 Cry1-/-:Cry2-/- MEFs were plated onto one well of a 24-

well plate, and total plasmid amount was adjusted to 810 ng per well (a mixture of 400 

ng pMU2-P(Cry1)-FLAG-I/RRE-Cry1 vector, 400 ng pGL3-P(Per2)-dLuc, and 10 ng 

phRL-SV40 plasmid). In the assay shown in Figure S4D (+TIR condition), a mixture 

of 200 ng pMU2-P(Cry1)-FLAG-I/RRE-Cry1(-mAID) vector, 200ng of pAID1.2str-

P(CMV)-OsTir1, 400 ng pGL3-P(Per2)-dLuc, and 10 ng phRL-SV40 plasmid was 

transfected. 

 

Sequence alignment and molecular phylogenetic analysis 

The amino acid sequences for cryptochrome superfamily were collected from Swiss-

Prot database with search keywords “cryptochrome”, “6 4 photolyase”, or “CPD 

photolyase”. Proteins that are not involved in the cryptochrome superfamily were 

manually excluded. The sequence dataset was aligned by MUSCLE algorithm (Edgar, 

2004) running on MEGA7 software (Kumar et al., 2016). A phylogenetic tree for 

cryptochrome superfamily proteins were calculated by the MEGA7 using Maximum 

Likelihood method based on the JTT matrix-based model (Jones et al., 1992). A 

sequence logo is generated through WebLogo 3.5.0 website (Crooks et al., 2004). 

 

Protein structural analyses 

All images for protein structures were built by using PyMOL software (Schrodinger, 

LLC). For the calculation of electrostatic potential, PDB file was converted to PQR file 

by the PDB2PQR web service with PARSE forcefiled (Dolinsky et al., 2007; Dolinsky 

et al., 2004). pH 7 was chosen for pKa calculation. The PQR file was then used for the 

generation of electrostatic potential map by using APBS software (Baker et al., 2001) 

running on PyMOL software. 



 

Statistical analysis and data processing 

All statistical analysis and data processing were done in R 3.2.0, Mathematica 10 

(Wolfram Research), or Excel 2013 (Microsoft). 
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