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Abstract
The system-level identification and analysis of molecular and cellular networks in mammals can be accelerated by “next-
generation” genetics, which is defined as genetics that can achieve desired genetic makeup in a single generation without 
any animal crossing. We recently established a highly efficient procedure for producing knock-out (KO) mice using the 
“Triple-CRISPR” method, which targets a single gene by triple gRNAs in the CRISPR/Cas9 system. This procedure achieved 
an almost perfect KO efficiency (96–100%). We also established a highly efficient procedure, the “ES-mouse” method, 
for producing knock-in (KI) mice within a single generation. In this method, ES cells were treated with three inhibitors to 
keep their potency and then injected into 8-cell-stage embryos. These procedures dramatically shortened the time required 
to produce KO or KI mice from years down to about 3 months. The produced KO and KI mice can also be systematically 
profiled at a single-cell resolution by the “whole-organ cell profiling,” which was realized by tissue-clearing methods, such 
as CUBIC, and an advanced light-sheet microscopy. The review describes the establishment and application of these tech-
nologies above in analyzing the three states (NREM sleep, REM sleep, and awake) of mammalian brains. It also discusses 
the role of calcium and muscarinic receptors in these states as well as the current challenges and future opportunities in the 
next-generation mammalian genetics and whole-organ cell profiling for organism-level systems biology.

Keywords Systems biology · Next-generation genetics · Triple CRISPR · ES mouse · Whole-organ cell profiling · Tissue 
clearing

Introduction

A life system is a system consisting of multiple layers of 
biological components (e.g., genes, transcripts, and pro-
teins), and the elements between these layers interact with 
each other (e.g., the central dogma of molecular biology) 
(Cobb 2017). Living systems are indeed far too complex 
to be understood based on a linear chain of cause and 
effect. Systems biology promises to speed up the process 

of research by bypassing the classical methods and using a 
holistic approach (Kellenberger 2004). Systems biology is 
a multidisciplinary field of research, useful for understand-
ing the target biological system. It typically includes four 
steps: identifying factors (systems identification), analyz-
ing relationships (systems analysis), controlling systems 
behavior (systems control), and designing and rebuilding 
systems (systems design) (Kitano 2000, 2002; Ukai and 
Ueda, 2010). The latter two are categorized as synthetic 
biology in some cases. About systems biology, many good 
textbooks and reviews have been published (Ideker et al. 
2001; Alon 2019; Davis et al. 2019; Nijhout et al. 2019; 
Tyson and Novak, 2020). Focusing on oscillators (e.g., cell 
cycle, somite segmentation clock, and the circadian clock), 
examples of successful systems biology approaches can be 
found in the following articles (Ueda et al. 2005; Masamizu 
et al. 2006; Novak and Tyson, 2008; Ukai-Tadenuma et al. 
2008; Tigges et al. 2009; Ferrell et al. 2011; Ukai-Tadenuma 
et al. 2011; Ode et al. 2017).
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This review explains the possibility of performing 
organism-level systems biology research on mammals, 
especially systems identification, which can be attributed to 
high-throughput quantitative analysis and next-generation 
genetics. We further discuss the whole-organ cell profiling, 
which is realized by tissue-clearing methods and light-sheet 
microscopy. Furthermore, the challenge of achieving sys-
tems biology on an organismal level in sleep studies using 
mice will be presented, and finally, systems biology in 
humans will be discussed.

Organism‑level systems biology

Systems identification

Systems biology focuses on the relationships among players 
rather than the players themselves. Systems identification is 
a step towards identifying the players in the target biological 
phenomenon. The keywords in systems identification are 
“comprehensiveness” and “quantitative analysis.” In order 
to get a complete picture of the target and understand the 
relationships among players, it is necessary to identify the 
players comprehensively. Uniform and high-throughput 
quantitative analyses support measuring the behavior of 
the system and analyzing players’ weights on the system’s 
behavior (Susaki et al. 2017).

Comprehensiveness

Many important findings in life science have been reported 
in the past 20 years. The human genome project was a suc-
cessful pioneer of the big science in life science, and its 
output, decoded genome sequence, changed researchers’ 
way of thinking, planning, and performing experiments. 
Nowadays, not only species’ genomes (e.g., humans, mice, 
and rats) (Lander et al. 2001; Venter et al. 2001; Mouse 
Genome Sequencing et al. 2002; Gibbs et al. 2004; Interna-
tional Human Genome Sequencing 2004; Zoonomia 2020) 
but also personal genomes are available (Gonzaga-Jauregui 
et al. 2012; Lupski 2016).

Systems identification is supported by omics approaches. 
The suffix “-ome” (completion) is used in a variety of bio-
logical layers, such as gene (genome), RNA (transcriptome), 
and protein (proteome) (Joyce and Palsson, 2006). The omics 
allow researchers to perform non-biased and comprehensive 
analyses and achieve the real nature of their target biological 
systems. Previously, researchers were constrained to choose 
study targets based on existing reports and their inspiration 
without knowing the whole picture. However, through omics 
approaches, researchers can choose targets from a known 
number of candidates. Further, we can test “all” candidates 
listed (Joyce and Palsson, 2006). Multi-omics is a kind of 

challenge that elucidates the fundamental features of organ-
isms by integrating various omics data (Hasin et al. 2017). 
Employing data and models produced from multi-omics 
methods allows researchers to obtain a comprehensive view 
of their target molecular pathways, organisms, or diseases, 
etc. (Nielsen 2017; Pinu et al. 2019). In 2020, Wang et al. 
discovered a circadian kinome using multi-omics data. The 
team employed fly heads to perform phosphoproteomics 
jointly with transcriptomic and proteomic profiling and 
found 789 phosphorylation sites that displayed circadian 
oscillations. They also predicted 27 kinases that were poten-
tially involved in the phosphorylation of these sites (Wang 
et al. 2020).

The understanding of cellular systems was brought by 
decoding and understanding the perfect set of genes in some 
respects. The understanding of multicellular units, such as 
tissues and organisms, is more complicated because tissues 
and organisms are composed from heterogeneous cell types. 
Although the understanding of functional gene networks in 
tissues has been achieved through knockout (KO) mouse 
studies, there are bottlenecks to raise throughput of the 
gene modified animal studies. In this sense, we introduce 
next-generation genetics as mentioned in “Next-generation 
genetics.” To understand components behavior involving the 
systems, we have to have a “cell catalogue” of the target tis-
sues or organism. In this sense, the methods for figuring out 
the whole cells in one tissue are needed. One of such key 
technologies is the tissue clearing as mentioned in “Whole-
organ cell profiling.”

Next‑generation genetics

The bottlenecks

Although investigating mammalian systems biology on an 
organism-level appears ideal, two bottlenecks exist in the 
genetic modification and the crossing steps. Traditionally, 
the process of generating a knock-in (KI) or KO model 
mouse is arduous and prolonged. Researchers need to first 
produce their mutations of interest by means of gene tar-
geting, whose efficiency depends on the prolonged rate of 
spontaneous homologous recombination, and then intro-
duce these mutations to the embryonic stem cells (ESCs) 
of mice (Capecchi 2005). Another bottleneck occurs in the 
crossing step. After obtaining the gene-modified ESCs, 
researchers need to inject these into the blastocysts of the 
wild-type mice. As a result, chimera mice have both cells 
derived from the ESCs and wild-type embryos. Typically, 
two generations are required for these chimera mice (F0) 
to give rise to the homozygous mutants (F2), which carry 
two copies of the mutated genes of interest. Such a crossing 
procedure proceeds slowly and typically demands a period 
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of over 9 months (3 months/generation × 3 generations) for 
it to be completed (Fig. 1a).

Furthermore, rapid quantitative phenotyping methods are 
necessary. In sleep research, we need expertise in surgical 
techniques and analysis skills to investigate sleep staging. 
Thus, it is essential to accelerate the process of sleep analy-
sis through quantitative analysis and other innovations.

Quantitative phenotype analysis

To achieve a complete understanding of biological systems 
at an organism level, establishing quantification analytical 
methods of the target biological systems’ behavior is essen-
tial. In chronobiology, the identifications of the period gene 
in fruit flies and the Clock gene in mice are great successes 
brought by the forward genetic mutants screening. These 
identifications were achieved by counting the infra-red beam 
interruption (flies) or wheel revolutions (mice) to analyze the 
circadian rhythm phenotypes of the subjects (Konopka and 
Benzer, 1971; Reddy et al. 1984; Zehring et al. 1984; Vitat-
erna et al. 1994; King et al. 1997). Regarding sleep research, 
Yanagisawa’s group performed a forward genetic screening 
on mice harboring ethyl nitrosourea–derived mutations. 
Through electroencephalography and electromyography 
staging, they found two interesting mutants, Sleepy (Sik3) 
and Dreamless (Nalcn) (Funato et al. 2016). International 
Mouse Phenotype Consortium published their phenotyping 
results from studying more than 7,500 knockout mice with 

standardized phenotyping methods. Zhang et al. screened 
750 mutant mice lines with the indirect calorimetry datasets 
and identified five novel genes involved in circadian mis-
alignment (Zhang et al. 2020). Our team developed Snappy 
Sleep Stager (SSS), a high-performance, non-invasive, and 
respiration-based fully automated sleep phenotyping system 
(Sunagawa et al. 2016). Now sleep–wake patterns of 1,152 
mice can be tested weekly in our facility.

Triple CRISPR

Over the past decade, efforts have been made to overcome 
the aforementioned genetic modification and crossing issues. 
The CRISPR/Cas9 system, which contains a Cas9 DNA 
endonuclease, a CRISPR RNA (crRNA), and a trans-acti-
vating crRNA (tracrRNA), emerged as one of such efforts. 
The crRNA and tracrRNA were further edited and fused to 
become a synthetic single-guide RNA (sgRNA) (Deltcheva 
et al. 2011; Jinek et al. 2012). This technology had effec-
tively raised the efficiency of genetic modification and ena-
bled researchers to cross the bottleneck in genetic modifica-
tion (Wang et al. 2013; Yang et al. 2013). More advanced 
than the traditional CRISPR/Cas9 system, the Triple-
CRISPR method concurrently utilizes three types of sgRNA 
for targeting one gene. Our study has revealed that this 
invention allows the Triple-CRISPR technology to achieve 
a biallelic KO efficiency of about 100%, which is consider-
ably higher than the efficiency attained by the conventional 

Fig. 1  The next-generation 
mammalian genetics. a Conven-
tional methods with crossing. 
By conventional methods, 
more than 1 year is required to 
obtain enough gene-modified 
mice and test the hypothesis. 
This is because crossing is 
required for preparing mice. b 
The next-generation genetics 
without crossing. The next-
generation mammalian genetics 
is genetics without crossing. We 
can test hypotheses after about 
3 months because crossing is 
unnecessary. These are based 
on the Triple CRISPR and ES 
mouse methods. Details of the 
Triple CRISPR (lower left) 
and ES mouse (lower right) are 
mentioned in the text
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single-targeted CRISPR (Sunagawa et al. 2016). Attributed 
to such an almost perfect biallelic KO efficiency from the 
Triple CRISPR, researchers can now address the crossing 
issue, as they are able to obtain the homozygous mutants 
at the F0 generation (Fig. 1b). Promisingly, a triple-target 
CRISPR screen identified Slc38a4/SNAT4 as a critical amino 
acid transporter for placental development in mice (Matoba 
et al. 2019). The group also succeeded in generating mice 
with spermatozoa fully derived from ES mice using this 
method (Miura et al. 2021).

ES mouse

The ES mouse is almost entirely ESC-derived and carries 
mutations throughout the body in its F0 generation. ESCs 
are commonly cultured with leukemia inhibitory factor (LIF) 
and serum to maintain their potency and preserve them at 
an undifferentiated stage. There are three inhibitors (3i), the 
FGF receptor inhibitor, the GSK3 inhibitor, and the ERK 
inhibitor, which also support the undifferentiated stages of 
the ESCs (Ying et al. 2008). After being treated with the 
3i, these ESCs are then injected into 8-cell stage embryos 
at high potency, which increases the contribution of ESC-
derived cells in the born mice (Kiyonari et al. 2010). Gener-
ating diverse kinds of KI ESCs in parallel with the ES mouse 
technology, Ukai et al. further enhanced the productivity of 
the KI ESCs. They accomplished a systematic production of 
various types of the KI ES mice in 2 to 3 months (Ode et al. 
2017; Ukai et al. 2017) (Fig. 1b).

Whole‑organ cell profiling

Establishing tissue‑clearing methods

Tissue opacity results from light scattering and light absorp-
tion. The former originates from the heterogeneity of refrac-
tive index (RI) in components of biological tissues, such as 
water, lipids, and proteins. The latter comes from chromo-
phores, such as hemoglobin. There is a hundred-year history 
of developing chemical reagents to unify RI and decolorize 
the native pigments (Susaki and Ueda, 2016; Ueda et al. 
2020a, 2020b; Tian et al. 2021). The German anatomist 
Werner Spalteholz was a pioneer of the field. In the 1910s, 
he developed a method for making human tissue translucent 
by hydrophobic reagents. Another hydrophobic tissue clear-
ing method, BABB, was reported after decades of silence 
(Dent et al. 1989). Hydrophilic tissue-clearing methods were 
reported by Chiang et al. and Tuchin et al. (Chiang et al. 
2001; Tuchin et al. 2002). The great success in 3D-fluo-
rescent imaging using clearized tissues by Dodt et al. and 
Hama et al. (Dodt et al. 2007; Hama et al. 2011) triggered 
extensive development of several types of tissue clearing 

methods in the 2010s, such as the hydrophobic 3DISCO and 
the hydrogel-based CLARITY (Erturk et al. 2012; Chung 
et al. 2013; Chung et al. 2013). We established hydrophilic 
CUBIC methods (Susaki et al. 2014; Tainaka et al. 2014). 
Boyden’s group reported Expansion microscopy, which 
employs a swollen hydrogel to expand tissue isotropically 
(Chen et al. 2015).

A light-sheet microscope is an appropriate tool to obtain 
a single-cell resolution image of a whole target organ on a 
realistic time scale. This microscope uses sheet light illumi-
nations to illuminate the specimen from the side. Research-
ers can then capture 2D stacks and reconstruct a 3D image 
in silico (Dodt et al. 2007; Keller and Dodt, 2012; Murakami 
et al. 2018; Matsumoto et al. 2019; Mano et al. 2021).

Cell profiling at a whole‑organ level

Whole-cell profiling in the brain is one of scientist’s long-
lasting dreams, and tissue clearing methods make this dream 
come true (Fig. 2). Here, we briefly introduced examples 
of cell profiling at a whole-organ level. The methods of 
these cell profiling technologies, including those not men-
tioned here, are well reviewed elsewhere (Susaki and Ueda 
2016; Gradinaru et al. 2018; Mano et al. 2018; Wassie et al. 
2019; Parra-Damas and Saura, 2020; Ueda et al. 2020a, 
2020b; Molbay et al. 2021; Tian et al. 2021).

Dott et al. first observed mouse brains at a single-cell 
resolution using organic solvent benzyl alcohol and benzyl 
benzoate (BABB) with light-sheet microscopy (Dodt et al. 
2007). Ertürk et al. also observed the whole mouse brain at 
a single-cell resolution by developing the 3DISCO (Erturk 
et al. 2012). Pan et al. clearized tissues from the brain to 
the spinal cord using uDISCO in mice and rats and imaged 
neuronal connections and vasculature for the subjects from 
head to toe for over 7 cm (Pan et al. 2016). Samples treated 
with hydrophobic reagents shrink in size. The advantage 
of the hydrophobic method is its rapid and robust clearing, 
but the disadvantage of this method is its rapid bleaching 
of endogenously expressed fluorescent proteins. In this 
regard, uDISCO can preserve fluorescent proteins for several 
months and make intact organs and rodent bodies transpar-
ent (Erturk et al. 2012; Pan et al. 2016). Ke et al. utilized 
SeeDB to describe the near-complete wiring diagram of 
sister mitral cells associated with a common glomerulus 
in the mouse olfactory bulb (Ke et al. 2013). Susaki et al. 
observed not only mice but also common marmoset’s brains 
using CUBIC methods (Susaki et al. 2014, 2015). Murakami 
et al. drew a whole-brain atlas at one single-cell resolution 
using CUBIC-X and generated the CUBIC Atlas, an ana-
lytic platform for whole-brain cell profiling (Murakami et al. 
2018). This method has been further developed into CUBIC-
Cloud (Mano et al. 2021). SeeDB, CUBIC, and CUBIC-X 
are hydrophilic methods that feature biocompatibility and 
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biosafety, and these methods require relatively long incu-
bation time for tissue clearization. SeeDB focuses on RI 
matching, while CUBICs and CUBIC-X use a combination 
of delipid and RI matching for tissue clearing. In contrast to 
CUBICs, CUBIC-X has a hydration process, which expands 
tissues. Inoue et  al. succeeded in human brain clearing 
by rapid delipidation of human brain tissues (Inoue et al. 
2019). Recently, Zhao et al. reported tissue clearing of the 
human brain using SHANEL (Zhao et al. 2020). Hydrophilic 
SHANEL can be applied to primates, especially humans. 
The hydrogel-based method, CLARITY, was employed in 
mouse brain tissue clearing (Chung et al. 2013). SHIELD is 
a technology from the same family as CLARITY that can be 
used to accomplish transparency in human tissues, including 
the brain (Park et al. 2019). CLARITY is an original hydro-
gel-based tissue clearing method, and SHIELD preserves the 
fluorescence and antigenicity of proteins as well as the archi-
tecture of transcripts and tissues under harsh conditions.

Besides brains, tissue clearing can also be applied to 
other tissues. In our work, CUBIC and its derivatives were 
employed to investigate organs, such as the kidney and heart, 
and the whole body of mice and marmosets (Tainaka et al. 
2014; Susaki and Ueda, 2016; Susaki et al. 2020). Belle 

et al. succeeded in their 3D visualization and analysis of 
early human development by transparentization of human 
embryos (gestation weeks (GW) 6 to 8) and human fetuses 
(GW8.5 to 14). They utilized a combination of whole-mount 
immunostaining, 3DISCO clearing, and light-sheet imaging 
during their research (Belle et al. 2017). These suggest that 
cell profiling at a whole-organ level is now realized not only 
in animal models but also in humans.

Application in mouse sleep research

Calcium makes mice sleep

By combining SSS with the Triple-CRISPR technology, we 
were able to perform sleep phenotyping of KO mice cover-
ing almost all gene families. A comprehensive KO study 
through one gene family is now achievable (Sunagawa et al. 
2016; Tatsuki et al. 2016; Niwa et al. 2018; Yoshida et al. 
2018) (Fig. 3).

Using a simulation approach, Tatsuki et al. identified 
that  Ca2+ was a key player for regulating sleep in mice. Our 
group has developed a computational model based on a 

Fig. 2  Whole-organ cell profil-
ing by tissue-clearing. a Tissue 
opacity resulted from light 
scattering and light absorption. 
Tissue clearing can be achieved 
by setting an appropriate refrac-
tive index (left) and decoloriza-
tion of pigments (right). b By 
hydrophilic (e.g., Scale, SeeDB, 
CUBIC), hydrophobic (e.g., 
BABB, 3DISCO, uDISO), or 
hydro-gel-based tissue-clearing 
methods (e.g., CLARITY, 
Expansion Microscopy), fixed 
organs become translucent. 
Examples of before and after 
CUBIC-treated brains are 
shown. Photos are taken by 
Mr. Shigeta (The University of 
Tokyo). c We can reconstruct 
organs in silico at a single-
cell resolution. As examples, 
snapshots of a mouse brain 
reconstructed in silico (CUBIC-
Cloud) are shown; the whole 
brain (left) and an enlarged part 
of the brain (right). Each color 
dot represents a single cell. The 
snapshots are kind gifts from 
Drs. Matsumoto and Mitani 
(RIKEN BDR)
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 Ca2+-dependent sleep duration hypothesis, and we identified 
multiple genes that could be potentially involved in the act of 
sleep. We then decided to screen for key molecules related to 
sleep generation by testing 21 gene KO mice using the SSS 
and the Triple-CRISPR methods. Our research discovered 
that dysfunctional  Ca2+-dependent K + channels (Kcnn2, 
Kcnn3), voltage-gated  Ca2+ channels (Cacna1g, Cacna1h), 
and  Ca2+/calmodulin-dependent kinases (Camk2a, Camk2b) 
reduced the duration of sleep in mice. In contrast, dysfunc-
tional plasma membrane  Ca2+ ATPase (Atp2b3) lengthened 
the sleep time in mice (Tatsuki et al. 2016). In addition, a 
whole neuron behavioral change by NMDA receptor antago-
nist (MK-801) was studied using the CUBIC analysis (Tat-
suki et al. 2016). We were able to reveal that the impaired 
NMDA receptors decreased sleep duration while elevating 
neural excitability in mice. The research above suggests that 
calcium promotes sleep in mice (Tatsuki et al. 2016). Further 
studies have indicated the involvement of sleep-promoting 
kinase phosphorylation, like CaMK2 phosphorylation, 
which is downstream from the calcium pathway (Ode and 
Ueda, 2020).

Acetylcholine receptors are needed for REM 
and NREM sleep

The regulatory role that the cholinergic system plays in 
mammalian sleep has been widely investigated (Brown 
et al. 2012). Our research team systematically generated 
acetylcholine receptors KO mice (11 nicotinic acetylcholine 
receptors and 5 muscarinic acetylcholine receptors) using 

the Triple CRISPR and confirmed phenotypes using the SSS 
method (Niwa et al. 2018). The results of our study sug-
gest that muscarinic acetylcholine receptors M1 and M3 are 
essential for the regulation of sleep. The KO of Chrm1 short-
ened and fragmented REM sleep, while the KO of Chrm3 
reduced NERM sleep durations of the subjects. Strikingly, 
the Chrm1 and Chrm3 double KO mice illustrated a REM-
less phenotype. This phenotype was also confirmed by inves-
tigating the ES mouse base Chrm1/Chrm3 double KO mice 
(Niwa et al. 2018). Overall, the next-generation genetics has 
raised the throughput of in vivo analyses involving geneti-
cally modified animals, which has enabled a more efficient 
system identification in mammalian organism-level systems 
biology (Fig. 3).

Future directions for organism‑level systems 
biology

From correlation to causality

Humans are the most important and fascinating model 
animals. However, due to many limitations, systems bio-
logical approaches cannot be conducted on humans as we 
have been able to do on mice (Ukai et al. 2019). Ethically, 
experimental-motivated genetic modification is not allowed 
to be conducted on humans (Lanphier et al. 2015; Munsie 
and Gyngell, 2018). Technically, we cannot perform geneti-
cally controlled experiments on humans because of our 
genetic diversity (Frazer et al. 2009; di Iulio et al. 2018). 

Fig. 3  Applications of next-
generation genetics and cell 
profiling methods. Based on a 
working hypothesis, research-
ers genetically perturb mice 
efficiently using the next-
generation genetics. Through 
high-throughput analysis on 
their models’ phenotypes, 
researchers are able to test their 
working hypothesis. Whole-cell 
profiling may help researchers 
verify their hypothesis, and 
spatio-temporal information 
obtained from cell profiling 
could improve their hypothesis. 
In our sleep research, we first 
hypothesized the critical role of 
calcium in sleep and then tested 
our hypothesis by generat-
ing a series of KO mice. We 
systematically analyzed their 
phenotypes by respiratory-based 
sleep analyzer afterward
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Furthermore, life-long observations are difficult to perform 
as humans have relatively long-life spans (Fig. 4).

Today, we endeavor to establish a complete picture of 
human systems biology. To accomplish this, it is important 
to gather multiple layers of research: quantitative behavioral 
analysis in humans and genome-wide analysis of associated 
genes (Seshadri et al. 2010; Jansen et al. 2019; Uffelmann 
et al. 2021). This is in addition to high-throughput model 
animal phenotyping studies as well as further analysis of key 
regulators of the target systems at a molecular level in vitro 
(Fig. 4). Specifically, it is necessary to initially observe and 
investigate the correlations between human genotypes and 
phenotypes through large-scale quantitative analyses in 
humans. Particularly, these analyses have revealed interest-
ing topics worthy of investigation. For example, a genome-
wide analysis of insomnia disorder revealed heritability as a 
significant factor. The research also found a significant locus 
on Chr 7 (q11.22) among the three ancestral groups studied 
(European American, African American, and Latino Ameri-
can) and a significant gene-based association for RFX3 on 
Chr 9 in European American population (Stein et al. 2018). 
Notably, biologists are able to employ various genome-wide 

analyses to explore the potential gene components of dis-
eases of their interest such as Alzheimer’s disease, HIV 
disease, stroke, coronary artery disease (CAD), type 2 dia-
betes, and breast cancer (Stein et al. 2010; Wu et al. 2011; 
Dichgans et al. 2014; Xue et al. 2018; Ferreira et al. 2019). 
Additionally, associations found in genome-wide analysis 
studies could help scientists in the process of selecting genes 
for further investigation. However, since such correlations 
observed from human data do not indicate causal relations 
directly, it is imperative for researchers to conduct rigor-
ous experiments using animal models to further explore the 
causality between the selected genes and the target diseases 
of interest (Tam et al. 2019). Moreover, when envisioning 
the possible genotype–phenotype relationships that contrib-
ute to their target systems, biologists from this new era can 
utilize the various high-throughput next-generation genetic 
methods to perform phenotyping studies on mice models 
(Susaki et al. 2017; Ukai et al. 2019). Such research will 
be completed in vitro and in silico to analyze the identified 
candidates’ molecular characteristics (Ukai et al. 2019).

Identification of the potential regulators of the systems 
can also guide the process of assessing the target systems. 

Fig. 4  Systems biology in humans. a The difference between humans 
and mice when being employed as subjects for various biological 
research and analyses. Regarding the symbols, check marks suggest 
methods that can be completed on the subjects or advantages when 
employing the subjects. Triangles stand for methods that can be com-
pleted with risks or caution. Crosses indicate methods that cannot 
be completed on the subjects or disadvantages when employing the 

subjects. b Multiple layers of studies to achieve a system-level under-
standing of humans. Here, we demonstrate examples of large-scale 
quantitative research in humans, genome-wide association studies, 
verification by mouse phenotyping studies, and identification of regu-
lators of the biological systems of interest. Details are shown in the 
text
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Through accumulating these various studies and promoting 
a comprehensive understanding of this field, biologists will 
eventually have a broader understanding of their research 
topic at a systems level (Chuang et al. 2010; Kohl et al. 
2010). Such inspiring insights would ultimately contribute 
to advanced drug discovery and systems-based medicine.

Nature vs. nurture

Systems behavior is defined as both “nature” and “nurture.” 
“Nature” is defined as an individual’s genomic information, 
while “nurture” is defined as the environmental exposure 
history of the individual (Coll et al. 2003). Such environ-
mental information can accumulate in the body as epige-
netic changes or immunological factors, etc. (Tammen et al. 
2013).

The methods we have described so far have only revealed 
the “natural” aspect of the human biological system. Is there 
any way to reveal the “nurtural” aspect? Epigenome analysis 
using next-generation sequencers can provide comprehen-
sive information on gene silencing/activation, allowing us to 
investigate acquired changes in our genome (Ku et al. 2011; 
Kimura 2013). Also, if we are able to identify the epitopes 
of all the antibodies present in a single person, we can then 
learn about the antigen exposure history of the person. This 
process will also reveal the history of the environments to 
which the person has been exposed to. Although the devel-
opment of such a technology is challenging, it is worth 
future investigation.

Conclusions

Systems biology is an interdisciplinary area of research that 
aims to comprehensively investigate biological systems. For 
this review, we employed various examples to illustrate that 
the “next-generation” genetics could accelerate the process 
of systems-level identification and analysis. We further 
explained the challenges that organism-level systems biol-
ogy research had faced and the general concepts of the “Tri-
ple-CRISPR” and ES mouse methods. These two methods 
have significantly enhanced the efficiency of organism-level 
systems biology studies. In addition, the roles of calcium and 
muscarinic receptors in the three states (NREM sleep, REM 
sleep, and awake) of mammalian brains were investigated 
using these technologies. We also described ways that the 
tissue-clearing method, CUBIC, and advanced light-sheet 
microscopy made cell profiling at a whole-organ level a 
reality. Although systems biology research in mice is now 
realizable, such research conducted on humans remains chal-
lenging due to ethical and technical issues. Future efforts in 
combining personal genomics with human systems behav-
ior analysis could shed light on systems biology in humans 

and systems-based medicine, which would benefit all living 
beings.
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