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Abstract The circadian clock is an endogenous oscillator with a 24-h period.

Although delayed feedback repression was proposed to lie at the core of the clock

more than 20 years ago, the mechanism for making delay in feedback repression in

clock function has only been demonstrated recently. In the mammalian circadian

clock, delayed feedback repression is mediated through E/E0-box, D-box, and
RRE transcriptional cis-elements, which activate or repress each other through

downstream transcriptional activators/repressors. Among these three types of

cis-elements, transcriptional negative feedback mediated by E/E0-box plays a critical
role for circadian rhythms. A recent study showed that a combination of D-box and

RRE elements results in the delayed expression of Cry1, a potent transcriptional

inhibitor of the E/E0-box. The overall interconnection of these cis-elements can be

summarized as a combination of two oscillatory motifs: one is a simple delayed

feedback repression where only an RRE represses an E/E0-box, and the other is a

repressilator where each element inhibits another in turn (i.e., E/E0 box represses an
RRE, an RRE represses a D-box, and a D-box represses an E/E0 box). Experimental

verification of the roles of each motif as well as post-transcriptional regulation of

the circadian oscillator will be the next challenges.
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1 Circadian Clock in Mammals

In mammals the master clock is located in the suprachiasmatic nucleus (SCN).

Transcript analyses have indicated that circadian clocks are not restricted to SCN,

but are found in several tissues including the liver (Yamazaki et al. 2000) and

cultured cells such as rat fibroblasts Rat-1 (Balsalobre et al. 1998), mouse

fibroblasts NIH3T3 (Tsuchiya et al. 2003), or human osteosarcoma U-2OS cells

(Isojima et al. 2009; Vollmers et al. 2008). Therefore, circadian rhythms are driven

by cell-autonomous oscillators. Studies across species have elucidated the

conserved feature of molecular mechanisms underlying circadian rhythms: at the

core of the clock lies a transcriptional/translational negative feedback loop. For

example, in mice the transcription factors CLOCK and BMAL1 dimerize and

activate transcription of the Per and Cry genes. PER and CRY proteins accumulate

in the cytosol become phosphorylated and return to the nucleus where they inhibit

the activity of CLOCK and BMAL1. The turnover of PER and CRY proteins leads

to a new cycle of activation by CLOCK and BMAL1 via E/E0-box (Dunlap 1999;

Griffin et al. 1999; Kume et al. 1999; Reppert and Weaver 2002; Young and Kay

2001). In this process, PER and CRY form a negative feedback loop that inhibits

their own transcription. However, reciprocal activation of positive (CLOCK and

BMAL1) and negative (PER and CRY) regulators in a negative feedback loop is not

sufficient: there must be a delay or immediate self-inhibition of CRY and PER

would result in the stable lower expression of these factors rather than oscillation.

What molecular mechanism imposes this time delay? This chapter summarizes the

transcription network of the mammalian circadian clock and provides insights into

how the network together with post-translational regulation of clock proteins works

as a delayed negative feedback loop.

2 Identification of the Circadian Transcriptional Network

2.1 Transcriptional Network Based on Three
Clock-Controlled Elements

2.1.1 The E/E0-Box, the D-Box, and the RRE

The overall topology of mammalian circadian transcription network can be under-

stood by the combination of three clock-controlled elements (CCEs), short consen-

sus DNA sequences typically located near the promoter region of clock genes.

These CCEs are called the E/E0-box (CACGT(T/G)) (Gekakis et al. 1998;

Hogenesch et al. 1997; Ueda et al. 2005; Yoo et al. 2005), the D-box (DBP response
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element) (TTATG(C/T)AA) (Falvey et al. 1996; Ueda et al. 2005), and the RRE

[RevErbA response element, also called as ROR response element (RORE)] [(A/T)

A(A/T)NT(A/G)GGTCA] (Harding and Lazar 1993; Preitner et al. 2002; Ueda

et al. 2002, 2005).

By performing transcriptome analysis, expression of 24-h periodic genes was

reported in cultured cells (Grundschober et al. 2001), the SCN (Panda et al. 2002;

Ueda et al. 2002), and other tissues such as heart (Storch et al. 2002), liver (Panda

et al. 2002; Storch et al. 2002; Ueda et al. 2002), aorta (Rudic et al. 2005), adipose

tissues (Zvonic et al. 2006), calvarial bone (Zvonic et al. 2007), and hair follicle

(Akashi et al. 2010). Although there are differences in the rhythmicity of circadian-

expressed genes in each tissue, the following mammalian clock genes most com-

monly have circadian oscillation: Period1 (Per1), Per2, Per3,Dec1 (Bhlhb2),Dec2
(Bhlhb3), Cryptochome1 (Cry1), Clock, Npas2, Bmal1 (Arntl), Dbp, E4bp4 (Nfil3),
RevErbAa (Nr1d1), RevErbAb (Nr1d2), and Rora. The temporal expression of each

gene is controlled by a different combination of CCEs. Evolutionary conserved

E/E0-boxes are located in the noncoding regions of nine genes (Per1, Per2, Cry1,
Dbp, Rorγ, RevErbAa, RevErbAb, Dec1, and Dec2), D-boxes are contained in eight
genes (Per1, Per2, Per3, Cry1, RevErbAa, RevErbAb, Rorα, and Rorβ), and RREs

in six genes (Bmal1, Clock, Npas2, Cry1, E4bp4, and Rorc). The expressed gene

product positively or negatively regulates transcription activity by acting on CCEs:

CCEs and these clock genes form a closed network structure (Fig. 1) as described

below.

2.1.2 Transcription Regulation via the E/E0-Box and Clock Genes

The E/E0-box is positively regulated by Bmal1, Clock, and Npas2 and negatively

regulated by Per1–3, Cry1–2, and Dec1–2. CRY and PER are hypothesized to

autoregulate their own expression by repressing the heterodimeric complex of the

basic helix–loop–helix (bHLH) PER-ARNT-SIM (PAS) domain transcriptional

activators CLOCK and BMAL1, which bind to E/E0-box elements in the Cry1
and Per1–2 promoters. Although both positive regulators (Bmal1, Npas2, Clock)
and negative regulators (Per1–3 and Cry1–2) have circadian rhythmic expression

patterns, peak time of positive regulators are antiphase to that of negative regulators

(delayed negative feedback).

2.1.3 Transcription Regulation via the D-Box and Clock Genes

The D-box is positively regulated by PAR-bZIP (proline- and acidic amino acid-

rich basic leucine zipper) transcription factors (Dbp, Tef, and Hlf) and negatively

by E4bp4. Like the E/E0-box, an antiphase relationship of gene expression

between negative and positive regulators can be observed. In the D-box case,
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Fig. 1 Schematic representation of the transcriptional network of the mammalian circadian clock.

(a) In vitro cycling assay. Cultured mammalian cells (Rat-1) were transfected with dLuc under the
control of a clock-controlled element (CCE) and SV40 basic promoter (Ueda et al. 2005).

(b) Representative circadian rhythms of bioluminescence from a wild-type Per1 E-box CCE

fused to the SV40 basic promoter driving a dLuc reporter (left panel) and compared to biolumi-

nescence rhythms driven by a Per1 D-box (center panel) and a RRE (right panel). Original figures
are reproduced from Ueda et al. (2005). (c) Genes and CCEs are depicted as ellipsoids and

rectangles, respectively. Transcriptional/translational activation is shown by arrows (!) and

repression is depicted by arrows with flat ends (┤)
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the expression phase of the positive regulator Dbp is similar to that of Per1,
whereas the expression phase of the negative regulator E4bp4 is similar to that of

Bmal1 (Mitsui et al. 2001).

2.1.4 Transcription Regulation via the RRE and Clock Genes

RRE is positively regulated by Rora, Rorb, and Rorc and negatively regulated by

RevErbAa and RevErbAb. In the SCN, Rora and Rorb have circadian rhythms but

not Rorc (Ueda et al. 2002). Liu et al. reported that RevErbAa and RevErbAb are

functionally redundant and necessary for oscillation of the RRE-regulated gene

Bmal1. By contrast, Rors contribute to Bmal1 amplitude, but are not required for

generating oscillation (Liu et al. 2008).

2.1.5 Timing of Each CCE

The circadian timing at which each element becomes active for transcription can

be monitored with an in vitro cell culture system in which a destabilized firefly

luciferase (dLuc) reporter is driven by different clock-controlled promoters. After

cells are synchronized (i.e., with dexamethasone, forskolin, or serum), oscillations

in gene expression are recorded by bioluminescence (Nagoshi et al. 2004; Ueda

et al. 2002, 2005; Welsh et al. 2004). Using this in vitro cycling assay, the

“phase” of each CCE can be determined (Ueda et al. 2002, 2005) (Fig. 1).

Note that the term “phase” used in this chapter represents relative peak timing

of each circadian gene expression within single circadian cycle. Each CCE

is responsible for the gene expression at distinct circadian times: the peak time

of E/E0-box-driven expression is followed by D-box-driven expression after an

interval of ~5 h. Then, RRE-driven expression follows D-box expression after

~8 h. E/E0-box-driven expression begins to appear again ~11 h after RRE-driven

expression. In the case of the SCN, the subjective time drawn by each CCE can

be illustrated as “morning-time” for the E/E0-box, “evening-time” for the D-box,

and “nighttime” for the RRE (Ueda et al. 2005).

2.2 Importance of Gene Regulation via the E/E0-Box

2.2.1 Circadian Clock Perturbation via CCEs

The three CCEs have different impacts on cellular circadian rhythms: perturbation of

E/E0-box regulation abolishes circadian rhythms; perturbation of RRE regulation has

an intermediate but significant effect; and D-box disruption has almost no effect.

A study using Rat-1 cell showed this by overexpressing regulatory genes with

repressive activity to different CCEs (Ueda et al. 2005) (Fig. 2). The Per2 promoter

is regulated via an E/E0-box and a D-box, and the Bmal1 promoter is regulated via
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an RRE. When E/E0-box activity is perturbed by overexpression of the Cry1 gene,

both Per2-promoter-driven reporter gene (Per2-dLuc) and Bmal1-promoter-driven

reporter gene (Bmal1-dLuc) lose circadian rhythms. When an RRE is perturbed

through RevErbAa overexpression, Bmal1-dLuc loses circadian rhythms and the

amplitude of Per2-dLuc rhythmic expression is decreased. The impact of RRE

perturbation through RevErbAa overexpression appeared to be more significant in

mice liver. Kornmann et al. showed that liver-specific overexpression of RevErbAa
abolishes the rhythmicity of PER2::Luc expression in liver explants (Kornmann

et al. 2007). Contrary to the case of E/E0-box and RRE, D-box perturbation through
E4bp4 overexpression causes both Per2-dLuc and Bmal1-dLuc transcriptional

activity to have normal circadian rhythms (Ueda et al. 2005). These varying effects

are difficult to explain by mere quantitative differences in the strength of the three

repressors, which suggests that there is some qualitative difference between E/E0-
box, D-box, and RRE regulation in circadian rhythmicity.

2.2.2 Circadian Feedback Repression: Heart of the Circadian
Transcriptional Network

PER and CRY play key roles in the circadian clock transcriptional network by

closing the negative feedback loop of E/E0-box regulation. CRY has stronger

80,000

5,000

15,000

1,000

80,000

5,000

20,000

1,000

45,000

5,000

20,000

5,000

B
io

lu
m

in
es

ce
nc

e 
(c

ou
nt

s/
m

in
)

E/E'box D-box RRE

Cry1
Over Expression

E4bp4
Over Expression

RevErbAa
Over Expression

Per2-dLuc

Bmal1-dLuc

Fig. 2 Importance of the E/E0-box. Effect of repression on each CCE. The E/E0-boxes, D-box, and
RRE were repressed by overproduction of CRY1, E4BP4, and REVERBAa, respectively. The

consequences of those repressions were monitored by bioluminescence from Per2 and Bmal1
promoter driving a destabilized luciferase (Per2-dLuc and Bmail1-dLuc). Original figures are

reproduced from Ueda et al. (2005). The different shades of gray in the plot indicate different

amounts of transfected vector
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repressor activity than PER (Kume et al. 1999). Sato et al. reported that interference

of CRY1’s repressor activity on E/E0-box-mediated transcription can abolish circa-

dian transcriptional oscillations. They screened both human CLOCK and BMAL1

alleles that were insensitive to CRY1 repression but maintained normal transcrip-

tional activity. Selected clones have normal transcriptional activities similar to wild

type in the absence of CRY1, but have greater reporter activity in the presence of

CRY1. By analyzing either Per2-dLuc or Bmal1-dLuc, they observed that

cotransfection of either CLOCK or BMAL1 mutant alleles resulted in substantial

impairment of circadian rhythmicity after one or two cycles of oscillation;

cotransfection of both CRY-insensitive mutant CLOCK and BMAL1 together

resulted in the loss of circadian promoter activity. This suggests that transcriptional

repression of CLOCK/BMAL1 by CRY1 is required for circadian regulation via

both an E/E0-box and an RRE (Sato et al. 2006) (Fig. 3).

3 Minimal Circuit of the Mammalian Circadian Clock

3.1 Two Delayed Negative Feedback Loops

How is the negative feedback to an E/E0-box delayed? Although there is an E0-box
and an E-box in Cry1’s regulatory region (Fustin et al. 2009; Ueda et al. 2005), the

peak of Cry1 expression is evening-time, which is substantially delayed relative to

other genes with an E/E0-box (Fustin et al. 2009; Ueda et al. 2005). Cry1 has two

functional RREs in one of its introns (Ueda et al. 2005) and also D-box in its

promoter region (Ukai-Tadenuma et al. 2011). Ukai-Tadenuma et al. experimen-

tally confirmed that the combination of daytime elements (D-box) and nighttime

elements (RREs) within its intronic enhancer gives rise to Cry1’s delayed evening-

time expression. Interestingly, the observed delayed expression was well explained

by a simple phase-vector model that enabled artificially designed delayed

expressions (Ukai-Tadenuma et al. 2011) (Fig. 4).

Based on this simple phase-vector model (Fig. 4), they generated an array of

Cry1 constructs that have different phases and used these in a genetic complemen-

tation assay to restore circadian oscillation in arrhythmic Cry1�/�:Cry2�/� cells

established from Cry1�/�:Cry2�/� double-knockout mice (van der Horst et al.

1999). These experiments reveal that substantial delay of Cry1 expression is

required to restore single-cell-level rhythmicity and that prolonged delay of Cry1
expression can slow circadian oscillations (Fig. 5). These results suggest that phase

delay in Cry1 transcription is required for mammalian clock function and these

results provide formal proof that the design principle of the mammalian circadian

clock transcriptional network is negative feedback with delay (Ukai-Tadenuma

et al. 2011).
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Based on these results, they hypothesized that the transcriptional network can be

simplified into a model consisting of two transcriptional activations and four

transcriptional repressions on three regulatory DNA elements (Fig. 6). Notably,

this diagram can be envisaged as a composite of two distinct oscillatory network

motifs (1) a repressilator, which is composed of three repressions, and (2) a delayed

negative feedback loop, which is composed of two activations and one repression.

Both oscillatory network motifs include delayed feedback repression and can

generate autonomous oscillations independently (Elowitz and Leibler 2000;

Stricker et al. 2008).
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Fig. 3 The impairment of CRY-mediated repression. Coexpression of CLOCK/BMAL1 mutant

heterodimers that are insensitive to CRY repression ablates circadian E-box and RRE activities in

NIH3T3 cells. Plasmids expressing Flag-tagged CLOCK and BMAL1 alleles were transiently

cotransfected with the Per2-dLuc (upper panel) or Bmal1-dLuc reporter plasmid into NIH3T3

cells (lower panel). Per2 or Bmal1 promoter activities in NIH3T3 cells transfected with single or

double CRY1-insensitive CLOCK, and BMAL1 mutants (MT) were monitored over 5 (upper
panel) or 6 days (lower panel). All reporter activities were normalized such that the median wild-

type luciferase activity over the time course was 100 %. Original figures are reproduced from

Sato et al. (2006)
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3.2 Genetic Evidence for the Importance of CCEs

The minimal circuit model implies that all of three CCEs have substantial impor-

tance for the circadian oscillator. The importance of an E/E0-box-mediated regula-

tion is manifested by the phenotypes of several clock gene-knockout mice. The

circadian clock governs physiological phenomena like day–night variation of

activity, so changes in behavioral rhythms reflect differences in the endogenous

clock of mutant mice. Accordingly, disruption of Bmal1, a positive regulator of

E/E0-box-mediated regulation, directly results in the loss behavioral rhythms in

mice (Bunger et al. 2000; Shi et al. 2010). Disruption of Clock gene did not result in
loss of behavioral rhythms (DeBruyne et al. 2007) probably becauseClock and another
gene Npas2 have redundant roles: Clock and Npas2 double-knockout mice have

arrhythmic behavioral patterns (DeBruyne et al. 2007), while Npas2-disrupted mice

have normal behavioral rhythms (Dudley et al. 2003). Loss of negative regulator of E/

E0-box-mediated transcription also results in arrhythmic phenotypes. Both Per1 and

Per2 disruptedmice have loss of circadian rhythmicity of behavioral activity (Bae et al.

2001; Zheng et al. 2001), and Cry1�/�:Cry2�/� mice have arrhythmic behavioral

patterns (van der Horst et al. 1999; Vitaterna et al. 1999).

The minimal structure shown in Fig. 6 implies that D-box and RRE also play

an essential role to maintain the delay time for negative feedback. For example,

the double knockout of RevErbAa and RevErbAb mice has arrhythmic
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Fig. 4 Phase-vector model. A new phase results from the combinatorial synthesis of two

transcriptional regulators or two clock-controlled DNA elements, which can be illustrated to a

first-order approximation by a phase-vector model. This combinatorial regulatory mechanism for

generating new circadian phases of transcription represents a general design principle underpin-

ning complex system behavior. Assume wave function fx(t) ¼ Ax cos(θ(t) + ϕx). The amplitude

of wave A is represented by the length of a phase vector P, and the phase of wave ϕ is

represented by the angle of P. The component waves f1 and f2 are displayed by phase vectors P1

and P2. Pc is the summed phase vector of P1 and P2. Original graph is reproduced from Ukai-

Tadenuma et al. (2011)
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Cry1 expression construct were cotransfected into Cry1�/�:Cry2�/� cells. (b) Cry1 expression
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a D-box (Cry1 promoter), RRE (Cry1 intron), or both (promoter + intron). (c) Substantial delay in
feedback repression is required for mammalian clock function. The decreased delay dampens the

amplitude of circadian oscillations (top panel), and the prolonged delay in feedback repression
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Original figures are reproduced from Ukai-Tadenuma et al. (2011). Different trace shades repre-
sent results from triplicated experiments
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behavioral phenotypes and arrhythmic clock gene expression (Bugge et al. 2012;

Cho et al. 2012).

The importance of D-box transcriptional regulators is still unclear because no

report shows that dysfunctional mice for D-box regulators have completely arrhyth-

mic behavioral patterns. Lopez-Molina et al. reported that Dbp knockout mice have

normal behavioral rhythms compared to wild type (Lopez-Molina et al. 1997). Hlf
or Tef disrupted mice also have almost normal behavioral rhythms (Gachon et al.

2004). Even triple knockout of PAR-bZIP transcriptional factor mice have almost

normal behavior rhythms (Gachon et al. 2004). Although E4bp4 knockout mice was

constructed (Gascoyne et al. 2009), behavioral rhythms of the mice were not

reported.

3.3 Generation of Various Phases by the Combination of CCEs

From DNA microarray data, more than 10 % of expressed genes have circadian

rhythms with a wide range of peak timings (Delaunay and Laudet 2002); the

distribution of peak timing is not limited to three circadian times corresponding

to the expression timing of each CCE. How do these “intermediate” expression

timings arise? One possibility is that the combination of three CCEs generates

various circadian phases.

Ukai-Tadenuma, Kasukawa et al. adopted a synthetic approach to physically

simulate the correlation between CCEs combinations and the peak timing of
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expression. They used three components: an artificial activator (dGAL4-VP16), an

artificial repressor (dGAL4), and a dGAL4-VP16-driven reporter gene (dLuc) as an
output (Fig. 7a). If the expression of artificial activator and repressor are controlled

by different CCEs, then the output may vary according to a combination of the

various peak timings of each CCE. By taking the peak expression timing of clock

gene expression in mouse liver, phase of each CCE-driven gene expression can be

related with subjective circadian time: E/E0-box-driven expression peak timing as

“morning,” RRE-driven expression peak timing as “night,” and D-box-driven peak

timing as “daytime.” They created “daytime” expression by the combination of E/

E0-box (morning)-driven activator and RRE (night)-driven repressor (Fig. 7b). This
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(d) The relationship of the expression timings of the transcription factors and output. Various

expression timing is generated from three basic phases (morning, daytime, and nighttime). Black
lines indicate activation (arrows) and gray lines repression (arrows with flat ends). Original figures
and graphs are reproduced from Ukai-Tadenuma et al. (2008)
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is similar to transcriptional regulation via D-box control; D-box is activated by E/

E0-box-controlledDbp and repressed by RRE-controlled E4bp4, and output phase is
“daytime.” Next, they created “night” by the combination of a D-box-driven

activator and an E/E0-box-driven repressor (Fig. 7c). This is similar to an RRE

with output phase “night”: RRE is regulated by D-box-driven activator (Rora) and
E/E0-box-driven repressor (RevErbAa), though RevErbAa is also controlled by D-

box. By combining these CCEs in different arrangements, Ukai-Tadenuma,

Kasukawa et al. also generated additional phases (Fig. 7d), which are not identical

to any of the original CCE timings (Ukai-Tadenuma et al. 2008).

4 Post-Translational Regulation, Another Layer of Delay
or Another Oscillator?

4.1 Phosphorylation of PER

As we discussed above, accumulating evidence indicates that Cry1-mediated

delayed negative feedback plays a critical role in the circadian transcription net-

work. If so, is the network structure of transcription activator/inhibitor relationship

sufficient for generating mammalian circadian properties? If we replace all tran-

scription factors with artificial ones [such as GAL4-VP16 used in Ukai-Tadenuma

et al. (2008)] but keep the network structure, could we reproduce a robust circadian

system? Natural circadian systems, however, seem to be more complex than the

transcription-translation network; post-translational regulation is also critical for

circadian function (Gallego and Virshup 2007). In particular, phosphorylation of

PERs by CKIδ/ε is one of the determinants of circadian period length (Lowrey et al.

2000; Toh et al., 2001; Xu et al., 2005). The first circadian mutant identified in

mammal was the tau-mutant hamster, which has a shorter behavioral period length

compared to a normal hamster (Ralph and Menaker 1988). Takahashi’s group

identified the tau mutation in the CKIe gene and found that PER phosphorylation

is lower in tau-mutant hamsters (Lowrey et al. 2000). The importance of PER

phosphorylation by CKIδ/ε for circadian rhythms is also true in humans. Toh et al.

discovered that familial advanced sleep-phase syndrome (FASPS) is caused by a

mutation in the CKIδ/ε binding site of PER2 (Toh et al. 2001). Likewise, Xu et al.

found that a mutation in CKIδ can also cause FASPS by modulating PER stability

(Xu et al. 2005). Additionally, chemical biology approaches identified several

compounds that shorten or lengthen circadian period (Chen et al. 2012; Hirota

et al. 2008; Isojima et al. 2009). One remarkable example is a series of CKIδ/ε
inhibitors, which can lengthen molecular clock period from 24 h to 48 h at the

cellular level (Isojima et al. 2009).

How PER phosphorylation controls circadian period is still mysterious, but

phosphorylation affects PER stability. PER protein is degraded by proteasome-

mediated proteolysis when phosphorylation of PER triggers recruitment of βTrCP,
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a subunit of the SCF ubiquitin ligase (Eide et al. 2005; Shirogane et al. 2005).

However, the FASPS mutation site is different from the region involved in βTrCP
recognition of PER (Eide et al. 2005). Furthermore, several results imply that

phosphorylation on FASPS-mutated site stabilizes PER protein (Shanware et al.

2011; Vanselow et al. 2006; Xu et al. 2007). Therefore, phosphorylation may

regulate the stability of PER in multiple ways. Recent studies of Drosophila
melanogaster PER and Neurospora crassa FRQ (a functional counterpart of

PER) show that multisite phosphorylation induces conformational changes in

these proteins (Chiu et al. 2011; Querfurth et al. 2011). A similar case might also

be true for mammalian PER: phosphorylation may control the stability of mamma-

lian PER by changing its global structure, not just by creating a recognition site for

βTrCP at a specific location.

The stability control of PER also may contribute to delay for transcriptional

negative feedback. Unlike other clock genes, the expression peak of Per1 and Per2
mRNA is ~4 h earlier than PER1/PER2 proteins (Pace-Schott and Hobson 2002).

This delay between mRNA and protein may be one of the determinants of period

length.

4.2 Stability Control of CRY in Circadian Oscillations

Recently, researchers noticed that not only PER but also CRY stability is important

for clock period. In 2007, two lines of ENU-mutant mice with long behavioral

rhythms were reported from different groups—Overtime (Siepka et al. 2007) and

Afterhours (Godinho et al. 2007). Both the Ovt and Afh mutations are located in the

same gene Fbxl3. Fbxl3 encodes an ubiquitin ligase E3 and controls CRY stability

by inducing CRY protein ubiquitination and degradation (Godinho et al. 2007;

Siepka et al. 2007). Delayed expression of CRY1 could be caused by the combina-

torial effect of delayed transcription activation and active degradation. These data

suggest that temporal control of clock gene products (like PER and CRY) is also

important for generating circadian rhythms. Effects of the CKIεtau and Fbxl3Afh

mutations are additive and independently contribute to circadian period (Maywood

et al. 2011).

4.3 Post-Translational Oscillation of the Mammalian
Circadian Clock

Phosphorylation-dependent degradation may be directly related to PER oscillation.

Two reports showed that PER2 protein translated from constitutively expressed

mRNA undergoes circadian oscillation (Fujimoto et al. 2006; Nishii et al. 2006).

These studies imply that a layer of post-translational control blankets the
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transcription-translation circadian machinery. Consistent with this idea, several

studies have shown that circadian rhythmicity is robust against fluctuations in

oscillating transcriptional activity. For example, the expression pattern of Bmal1
and Clock can be constant throughout the circadian cycle (von Gall et al. 2003).

Reducing the overall transcriptional activity only modestly affects the period length

of circadian rhythms in cultured cells (Dibner et al. 2009). Even in for CRY,

rhythmic expression is dispensable for circadian oscillation to a certain extent;

weak circadian oscillations can be observed in Cry1�/�:Cry2�/�cells rescued by

Cry1 under constant expression (Ukai-Tadenuma et al. 2011) or a constant supply

of CRY proteins (Fan et al. 2007). Genetic studies in Drosophila show that flies

with constant expression of PER maintain circadian rhythmicity (Ewer et al. 1988;

Frisch et al. 1994; Vosshall and Young 1995; Yang and Sehgal 2001). Taken

together, these results suggest that circadian oscillations do not necessarily depend

solely on the transcriptional activity in the E/E0-box feedback loop, because post-

translational control of clock proteins can compensate for loss of transcriptional

rhythms.

A post-translational circadian oscillator was also found in the cyanobacterium

circadian clock. Oscillations occur in the phosphorylation state of KaiC, a central

component of cyanobacterial circadian clock, even after the termination of global

transcriptional activity (Tomita et al. 2005). This KaiC-phosphorylation rhythm can

be reconstituted in vitro by mixing KaiC and its regulatory factors KaiB and KaiC

together with ATP (Nakajima et al. 2005). In mammals, a recent study discovered

the presence of the circadian oscillations in the redox state of enucleated human red

blood cells (O’Neill and Reddy 2011). The circadian oscillation in redox status of

peroxiredoxin proteins is conserved from prokaryotes to eukaryotes (Edgar et al.

2012) and can regulate the neuronal activity of SCN (Wang et al. 2012). Although a

core post-translational circadian oscillator in mammals remains to be identified,

cooperation of transcription-translation oscillator and post-transcriptional oscillator

would provide a more robust circadian timekeeping system. The investigation of

compatible interactions between delayed negative feedback loops mediated by the

CCEs and yet-unknown core post-translational oscillators will lead to a new

understanding of mammalian circadian clocks.
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