FIOOOResearch

F1000Research 2019, 8(F1000 Faculty Rev):499 Last updated: 16 APR 2019

REVIEW

'.) Check for updates

A period without PER: understanding 24-hour rhythms without
classic transcription and translation feedback loops [version 1;

peer review: 2 approved]

Arthur Millius ' 1.2 Koji L. Ode3, Hiroki R. Ueda'-3

TLaboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
2L aboratory of Systems Immunology and Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka,

565-0871, Japan

3Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033,

Japan

First published: 16 Apr 2019, 8(F1000 Faculty Rev):499 (
https://doi.org/10.12688/f1000research.18158.1)

Latest published: 16 Apr 2019, 8(F1000 Faculty Rev):499 (
https://doi.org/10.12688/f1000research.18158.1)

vi

Abstract

Since Ronald Konopka and Seymour Benzer’s discovery of the gene Period in
the 1970s, the circadian rhythm field has diligently investigated regulatory
mechanisms and intracellular transcriptional and translation feedback loops
involving Period, and these investigations culminated in a 2017 Nobel Prize in
Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C.
Hall. Although research on 24-hour behavior rhythms started with Period, a
series of discoveries in the past decade have shown us that post-transcriptional
regulation and protein modification, such as phosphorylation and oxidation, are
alternatives ways to building a ticking clock.
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Introduction

The time-keeping mechanisms of circadian rhythms can be
regulated by multiple layers of different cellular networks,
including transcription-translation feedback loops (TTFLs) and
post-translation oscillators (PTOs)'. Circadian TTFLs gener-
ate oscillations in gene expression through delayed negative
feedback whereby expression of a transcription factor nega-
tively regulates its own transcription’. The core of this genetic
network in mammals is the expression of a heterodimer of
BMALI (also called ARNTL) with either CLOCK or NPAS?2,
which binds at promoter cis-elements called E-boxes to drive
expression of genes encoding period (PER1-3), cryptochrome
(CRY1-2), and nuclear receptor subfamily (NR1D1-2) proteins,
which then repress Bmall expression by a series of separate
and interconnected feedback loops™*. In contrast to behaviors
driven by cyclic differences in gene expression, PTOs generate
rhythms independent of transcription and translation through bio-
chemical processes, such as phosphorylation, protein—protein
interactions, and other post-translational modifications. These
post-translational processes also alter TTFLs as well as post-
transcriptional modification of transcripts involved in TTFLs.
The most well-known PTO is the cyanobacteria KaiABC sys-
tem, which consists of only three proteins and ATP’, but novel
PTOs may also exist in red blood cells (RBCs)*“, which lack a
nucleus and the molecular machinery to drive TTFL rhythms.
In addition, a series of new and old observations of 24-hour
rhythms in biological contexts where classic TTFLs are absent
or diminished (Figure 1)""~** continue to puzzle researchers and
demonstrate that there are multiple ways to build a clock.

One of the first modern uses of the term “circadian” was to
describe 24-hour endogenous oscillators that alter Drosophila
fly behavior rhythms™, and the persistence of oscillations
at various temperatures was viewed as a defining feature of
circadian rhythms”“°. The first genetic component of circadian
rhythms was discovered in the 1970s when Ronald Konopka
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in Seymour Benzer’s lab used chemical mutagenesis of
Drosophila to discover three alleles of the Period gene”’. In the
1980s, rhythmicity of Period mutants was shown to be restored
by gene transfer’”, confirming that Period both is necessary
and can restore rhythmic behaviors, such as eclosion and
locomotor activity, in flies. In 1990, Hardin et al. proposed that
PER protein altered the levels of Period mRNA in a negative
feedback loop™, but at the time it was unclear whether PER
directly suppressed Period transcription or whether the negative
feedback occurred through an indirect route. A few years later,
researchers discovered that this negative feedback was direct in
the bread mold Neurospora crassa model of circadian rhythms
because the frequency (FRQ) directly repressed its own
transcription’’. In addition to Neurospora® and Drosophila®,
TTFL models of circadian rhythms from plants™ to mammals®
have been elucidated and reviewed extensively.

Post-translational oscillators and post-translational
modifications: breaking the transcription-translation
feedback loop mold

The modern idea that TTFLs were necessary for 24-hour
rhythms was shattered in 2005 when Nakajima et al. reconstituted
rhythmic 24-hour oscillations in protein phosphorylation with
just a small number of cyanobacterial proteins®. This seminal
moment in the circadian rhythm field spurred investigators to
examine other non-canonical rhythm-generating mechanisms and
to unearth forgotten studies of PTOs. For example, in the 1960s,
it was shown that the unicellular alga Acetabularia undergoes
diurnal rhythms of photosynthesis, which persist even after the
nucleus has been artificially removed”'.

There are a few more recent examples of organisms that have
circadian rhythms in the absence of TTFLs. In the unicellular
red alga Cyanidioschyzon merolae, circadian rhythms control
cell cycle progression in the absence of RNA translation’”, and
the unicellular dinoflagellate Lingulodinium has daily rhythms

Mice

Unicellular alga

no RNA rhythms ~ no SCN; genetic KO

behavior

Figure 1. Post-translation oscillators without transcription-translation feedback loops. Examples of post-translation oscillators
in enucleated cells such as Acetabularia and red blood cells, in unicellular alga lacking RNA rhythms, and in mice in which the classic
transcription-translation feedback loop module is disrupted genetically or anatomically. KO, knockout; SCN, suprachiasmatic nucleus.
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in bioluminescence and photosynthesis without a detectable
change in RNA transcript abundance and in the presence of
transcription inhibitors”. These studies suggest that protein
activities and post-translational modifications can serve as
24-hour oscillators. Research has centered on phosphorylation
as the period-determining post-translational modification’’~",
but other post-translational modifications, including meth-
ylation, acetylation, sumoylation, and ubiquitination, also alter
clock function®' .

Importantly, circadian rhythms are insensitive to temperature
and this property of temperature compensation was identified
in biological time-keeping systems, such as those of bees, flies,
and marine organisms, as early as the 1950s and 1960s™-2**-,
Transcription and translation are temperature-dependent
reactions*’ ", which suggests that post-translational activities
are important for temperature compensation. For example,
Isojima et al. revealed that phosphorylation by casein kinase I
(CKI) is a temperature-insensitive period-determining process,
and the degradation rate of PER2, which is regulated by CKI
phosphorylation, was found to be insensitive to temperature™.
Importantly, the phosphorylation of PER2-derived peptide by
CKI is insensitive to temperature in vitro. In 2015, the degra-
dation of PER2 was found to occur in a more complex mode
composed of three distinct stages, and the duration of the second
stage depended on circadian time, which led to the identifica-
tion of temperature-sensitive and -insensitive PER2 phosphor-
ylation sites’'. Thus, differences in the temperature sensitivity of
phosphorylation sites on the repressor, which alter degradation
rates at different temperatures, are responsible for temperature
compensation, PER2 stability, and ultimately the length of the
circadian period. In 2017, Shinohara er al. identified a short
sequence region around residue K224 in CKI, which was
responsible for temperature compensation and converted a tem-
perature-sensitive kinase into a temperature-insensitive one
in vitro”. Mutation of K224 shortens circadian behavioral
rhythms and alters the temperature dependency of the circadian
clock in the sub-hypothalamic region of the brain™, called
the suprachiasmatic nucleus (SCN), which controls circadian
response to light. It is though noteworthy that K224 is part of the
consensus KRQK monopartite nuclear localization signal in CKI,
which makes it difficult to disentangle the effects of tempera-
ture dependence from that of localization in vivo. These studies
provide evidence for how post-translational activities modify
TTFL rhythms, but a series of new and old studies have
revealed that PTOs can drive rhythms even in the absence of
TTFL clocks.

Blood: a novel source of post-translational oscillator
rhythms

Mammals have a natural supply of enucleated cells in RBCs,
and researchers have plumbed this cell type for non-TTFL
rhythms. In the 1970s, circadian rhythms in ATPase activity and
periodic rhythms in enzymes—such as acetylcholinesterase,
glyceraldehyde-3-phosphate ~ dehydrogenase, and glucose-6-
phosphate dehydrogenase—in RBCs were found (Table 1), but
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it was unclear whether the rhythms were robust or persistent
beyond 24 hours'’.

In 2011, an anti-oxidant enzyme called peroxiredoxin (PRX)
in cultured human RBCs was found to have temperature-
independent circadian cycles of hyperoxidation for up to
76 hours''. Because RBCs lack a nucleus and the rhythms
persisted in the presence of transcription and translation
inhibitors, a novel non-transcriptional-based circadian oscilla-
tor in mammals was proposed. Analysis of the PRX rhythms
relied solely on PRXI1, PRX2, and PRX-SO,, (hyperoxidized
PRX form) antibodies. In particular, the PRX-SO,, antibody
recognizes multiple hyperoxidized forms of PRX, results in
up to eight different bands on non-reducing sodium dodecyl
sulfate—polyacrylamide gel electrophoresis (SDS-PAGE)'', and
produces multiple non-specific bands that can confound inter-
pretation of the hyperoxidized signal***>, which make determina-
tion of the correct PRX isoform technically difficult and in-gel
controls essential. Nevertheless, the same researchers discovered
that hyperoxidized PRX-SO,, rthythms were conserved in a wide
range of species™".

In mice, blocking hemoglobin oxygen transport by incuba-
tion with carbon monoxide eliminates PRX2 hyperoxidized
rhythms’’. Hemoglobin auto-oxidation in RBCs generates
superoxide, which is converted to H,O, by superoxide dismutase
1 (SOD1)*”, and H,O, is subsequently reduced by catalase,
glutathione peroxidase, and PRXs™*** which results in the
oxidation of these proteins®. Oxidation of PRX2 is reversed by
sulfiredoxin (SRX)*~*, but rhythms in PRX2 oxidation in mice
are not mediated by the rhythmic reduction of hyperoxidized
PRX2 by SRX but rather through rhythmic degradation by
20S proteasomes, and only about 1% of the total PRX pool is
modified in a circadian manner’’. Mitochondria-specific PRX
(PRX3) is also reversibly inactivated by hyperoxidation, reduced,
and reactivated by SRX, and hyperoxidized PRX3 and SRX
undergo anti-phasic circadian oscillations in the mitochondria
in various mice tissues, which links mitochondria function
to circadian rhythms®. Another group revealed about three peaks
in hyperoxidized PRX-SO,, rhythms in mice over a 48-hour
period (instead of two as would be expected for a circadian
rhythm) and showed that rhythms were impaired in SODI-
mutant mice®. There is still uncertainty regarding the origin
of PRX hyperoxidation rhythms, but the data suggest that
PRX-SO,,, oscillations are more an output of rhythm-generating
machinery involving the 20S proteasome rather than a daily
oxidation-reduction cycle.

Deconstructing PRX rhythms biochemically and using non-
antibody methods, such as mass spectrometry, to directly
detect the hyperoxidized cysteine residue or redox-sensitive
fluorescent proteins may bolster understanding of this novel
PTO. However, biochemical reconstruction is difficult because
RBC lysis causes gradual loss of PRX-SO,,, signal over a 43-hour
period’. However, these types of approaches have revealed that
potassium-containing media enhances PRX2-SO,, rhythms’,
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Table 1. Oscillatory phenomena observed in human red blood cells.

Molecule Year Period Impact Reference
Glucose-6-phosphate 1975 ~12hours Observed two peaks in enzyme activity over a 24-hour period in three 13
dehydrogenase different individuals

Glutamate oxaloacetate 1975 ~12hours Observed two peaks in enzyme activity over a 24-hour period in two 13

transaminase different individuals

Acid phosphatase 1975 ~24 hours Observed one peak in enzyme activity over a 24-hour period in one 13
individual in plasma-free human red blood cell suspensions

Acetylcholinesterase 1975 ~24 hours Observed one peak in enzyme activity over a 24-hour period in two 18
individuals

Glucose-6-phosphate 1976 ~12 hours Observed two peaks in activity over a 24-hour period with one pattern 14

dehydrogenase peaking at 4 p.m. and midnight and the other peaking at midnight and
8 p.m. in six and five individuals, respectively

6-phophogluconate 1976 ~12hours Observed two peaks in activity over a 24-hour period peaking at 14

dehydrogenase 4 a.m. and 4 p.m. in 11 individuals

Lactic dehydrogenase 1976 ~12hours Observed two peaks in activity over a 24-hour period with one pattern 14
peaking at noon and midnight and the other peaking at 4 a.m. and
4 p.m. in four and seven individuals, respectively

Aspirate aminotransferase 1976 ~12 hours Observed two peaks in activity over a 24-hour period peaking at 4 am. 14
and 4 p.m. in 11 individuals

Hexokinase 1976 ~24 hours Observed one peak in activity over a 24-hour period peaking at 4 p.m. 14
in 11 individuals

Potassium efflux 1976 NS Observed a steady increase in potassium efflux over a 48-hour period in 12
an unknown number of individuals (averaged data reported)

Membrane potential 1976 ~24 hours Observed two peaks in membrane potential by DiIOC(3) over a 48-hour 12
period in an unknown number of individuals (averaged data reported)

Mg-dependent ATPase 1976 ~24 hours Observed one peak in activity from human blood bank bags incubated 8
at 37 °C for 27 hours (average of eight samples)

Acetylcholinesterase 1978 NS Observed variations in acetylcholinesterase activity over a 24-hour 10
period in four individuals, but variations had lower amplitude than
reference' and were not circadian

Peroxiredoxin 2011 ~24 hours Observed three peaks of peroxiredoxin dimer oxidation and PRX-SO,,, 11
abundance over a 60-hour period in three individuals

NADH 2011 ~24 hours Observed three peaks in NADH abundance over a 60-hour period in 11
three individuals

NADPH 2011 ~24 hours Observed three peaks in NADPH abundance over a 60-hour period in 11
three individuals

Membrane potential 2017 ~24 hours Observed two peaks in membrane potential by dielectrophoresis, 9
DIOC,(3), and mass spectrometry over a 48-hour period in four
biological replicates

Membrane conductance and 2017 ~24 hours Observed two or three peaks in membrane conductance and cytoplasm 9

cytoplasm conductivity conductivity over a 48-hour period in four individuals

Intracellular potassium 2017 ~24 hours Observed two peaks in intracellular potassium concentrations over a 9

48-hour period in four biological replicates

NS, not significant.

and chemical perturbation with Conoidin A, a PRX2 inhibitor”’,
shortens PER2:LUCIFERASE rhythms in immortalized mouse
fibroblasts®.

The exact mechanism of rhythmic PRX oxidation is still unclear,
but researchers have begun to examine other general rhythmic
behaviors in RBCs. Although no one has followed up on the
circadian, ultradian, and irregular rhythms of various enzyme
activities in the 1970s, in 2011 researchers reported circadian

changes in NADH and NADPH levels', and in 2017 research-
ers reproduced circadian changes in RBC membrane potential’
observed in an article published in 1976'. Paradoxically, the
researchers reported circadian changes in potassium concentra-
tion in 2017, whereas no rhythms in potassium were observed
in 1976; instead, a gradual and steady increase in potassium
efflux occurred over the 48-hour observation period. Whether
these differences arise from measuring slightly different
potassium populations (intracellular versus extracellular), a small
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sample size, technical differences in methods and individuals, or
an actual biological phenomenon remains to be determined.

Post-translation control of circadian period in
transcription-translation feedback loop model
organisms

There are shared design principles between the period-
determination  processes of PTO-based and TTFL-based
oscillators. A PTO generates rhythmic changes in protein
states without changing the amount of protein itself. On the
other hand, rhythmic protein synthesis and degradation are essen-
tial for TTFL-based oscillations, and mechanisms that control
protein abundance are critical for controlling the circadian period.
This idea is widely accepted for circadian TTFL oscillators
because there is a significant correlation between the half-life
of transcription repressor mutants, such as in Drosophila PER
and Neurospora FRQ, and circadian period®’’. The correlation
suggests that faster degradation of circadian repressors accel-
erates clock speed. In mammalian circadian clocks, F-box
proteins recruit E3 ubiquitin ligase complexes that license
PER and CRY degradation, which modulates period length’'.
Although the circadian TTFL-based oscillators involve post-
translational regulation as period-determination mechanisms,
modification of transcription repressors regulates period length
by changing repressor stability. For example, a mutation
in CKle that destabilizes mammalian PER results in period
shortening’>”, and mutation of a phosphorylation site on PER
that destabilizes PER also results in period shortening’”.
Other kinases, such as AMPK and DNA-PK, control period
length by altering CRY stability through phosphorylation®”’.
In addition, stabilization of CRY by small molecules lengthens
the period”, and destabilization of CRY by degron tagging of
CRY shortens the period”, strongly suggesting the causal
relationship between CRY stability and period length.

However, a recent study of the Neurospora circadian clock
challenged this protein stability—period length paradigm of
period determination in a TTFL-based oscillator’. Researchers
used an FWD-1-deleted strain, which is an F-box protein that
causes proteolysis of phosphorylated FRQ. The Afrd-1 strain
results in a markedly increased FRQ half-life, and new FRQ is
produced even in the presence of hyperphosphorylated FRQ.
Nonetheless, circadian oscillation of FRQ-promoter activities
persists with modest change in period length, and several
short-period mutations of FRQ still have a short period in a
Afrd-1 background in which the stability of FRQ is significantly
increased. Because mutation of phosphorylation sites in FRQ
still alters the period and because generic inhibition of kinase
activity lengthens the period even in the absence of FWD-1,
these data suggest that a protein-state not a protein-abundance
attribute, namely phosphorylation, controls period length.

A similar uncoupling of protein stability and circadian period
may occur even in the TTFL clock in mammals. A recent study of
CRY1 mutations in phosphorylation sites by Ode et al. revealed
that multiple phosphorylation sites near the co-factor binding
pocket of CRY1 markedly changes period length while having
only a modest effect on CRY1 half-life”. Mutagenesis of CRY1
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and CRY2 revealed mutations in a secondary co-factor binding
pocket which shorten the period without reducing CRY1
stability®’. Furthermore, an exon-skipping mutation in CRY1
found from a human family with delayed sleep phase syn-
drome lengthens the period without affecting CRY1 stability®.
Therefore, mammalian CRY may also control the circadian
period independently of its abundance.

If protein abundance control does not explain all aspects of
period determination, what is the nature of state control of
TTFL-based oscillator proteins such as multisite phosphoryla-
tion of FRQ, PER, and CRY? One of the shared properties of
period-determining repressor proteins is structural flexibility.
Most FRQ and PER regions modified by multisite phosphoryla-
tion are intrinsically disordered, highly flexible, and variable®*.
The multisite phosphorylation region of CRY1 critical for
period control also occurs on a flexible loop region. These
flexible regions may undergo a relatively large conformation
change that may underlie slow dynamics (that is, 24 hours) of
protein activity change. The intrinsically disordered C-terminal
domain of BMALI controls the period through a slow con-
formation change with a high energy barrier®. Conformation
changes may lead to a slow and coherent re-organization of
the macromolecular repressor complex®, which is consistent
with the dynamics of the cyanobacteria PTO** in which the
slow dynamics of the intrinsic conformational change of KaiC*
couple to the re-organization of the KaiABC complex”™. An
atomic-scale understanding of the repressor complex in a
TTFL-based oscillator may reveal subtle differences in molecu-
lar mechanisms of 24-hour period determination between PTO-
and TTFL-based oscillators.

Oscillations without classic transcription-translation
feedback loop oscillators

Several classic models of circadian rhythms have persistent
24-hour rhythms even when the circadian TTFL machinery is
absent or disrupted. In S2 cells, which are generally regarded
as non-rhythmic, a multi-omics approach recently revealed
hundreds of genes, proteins, and metabolites with 24-hour
rhythms®. Although this approach seems to suggest the
presence of a novel non-canonical oscillator with 24-hour
periodicity, it does not preclude possible cell cycle effects
from the roughly 24-hour doubling time of S2 cells or the
possibility of classic circadian clock components operating
below the experimental limits of detection. For example, large-
scale proteomics studies of circadian variation frequently fail
to detect circadian proteins’””> because there may be only a few
hundred to a thousand protein copies per cell””. Thus, genetic
knockout (KO) of canonical clock genes is needed to definitively
determine whether rhythms derive from a novel oscillator.

In mammals, genetic and anatomical ablation of the circa-
dian machinery normally disrupts 24-hour behavioral rhythms,
but rhythms persist under specialized situations. For example,
SCN-lesioned rats administered methamphetamine in the drink-
ing water retain circadian behaviors of activity in constant
light conditions'’. This so-called methamphetamine-sensitive
oscillator also does not depend on classic circadian genes,
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such as Perl-2, Cryl-2, Bmall, Npas2, and Clock'*”. Recent
data suggest that the methamphetamine-sensitive oscillator is
a long-period manifestation of a tunable dopamine ultradian
oscillator’”. KO of a dopamine transporter in SCN-lesioned
or Bmall KO mice, which prevents dopamine reuptake in
dopaminergic neurons, increases the period of the ultradian
rhythms. Similarly, administration of methamphetamine, which
increases extracellular dopamine concentrations, lengthens
ultradian rhythms in a dose-dependent manner from 4 hours
to an astonishing 48 hours. In contrast, the anti-psychotic
drug haloperidol, which selectively blocks the dopamine D2
receptor, shortens long-period rhythms induced by metham-
phetamine in wild-type and Bmall KO mice”. These data
suggest that dopamine neurons are a second independent
rhythm-generating mechanism in the brain, and future studies
using chemical and genetic approaches to perturb dopamine
pathways coupled with recently developed brain-clearing
techniques’~'" may enable a more complete understanding of
the neural architecture of this dopamine ultradian oscillator.

Conclusions

From blood to brain, these studies suggest that non-canonical
PTOs have an impact on circadian rhythms beyond the classic
PER negative feedback loop. However, recent studies of PER
itself, including temperature-sensitive phosphorylation sites’’,
three prime untranslated region (3’-UTR) regulation'”’, and the
separation of Period2 rhythms from Bmall rhythms in the
SCN'*, indicate that even a gene as well studied as Period can
still teach us new tricks about the period-determining mechanisms
of circadian rhythms.
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