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Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations
enable the molecule to respond to the external environmental perturbations. For extracting large conforma-
tional fluctuations, which predict the primary conformational change by the perturbation, principal component
analysis �PCA� has been used in molecular dynamics simulations. However, several versions of PCA, such as
Cartesian coordinate PCA and dihedral angle PCA �dPCA�, are limited to use with molecules with a single
dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs
with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical
meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical
meaning is yet to be developed. For developing such a formulation, we consider the conformational distribu-
tion change by the perturbation with arbitrary linearly independent perturbation functions. Within the second
order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally inter-
preted as a method for �1� decomposing a given perturbation into perturbations that independently contribute
to the conformational distribution change or �2� successively finding the perturbation that induces the largest
conformational distribution change. In this perturbational formulation of PCA, �i� the eigenvalue measures the
Kullback-Leibler divergence from the unperturbed to perturbed distributions, �ii� the eigenvector identifies the
combination of the perturbation functions, and �iii� the principal component determines the probability change
induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and
we designate it as potential energy PCA �PEPCA�. The PEPCA provides both general applicability and clear
physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in
vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second
principal components clearly characterize two stable states and the transition state between them. Positive and
negative components with larger absolute values of the first and second eigenvectors identify the electrostatic
interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore
indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the
molecular conformational fluctuation but also to predict the conformational distribution change by the pertur-
bation beyond the limitation of the previous methods.
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I. INTRODUCTION

Conformational fluctuations of a molecule are important
to its function, since such intrinsic fluctuations enable the
molecule to respond to perturbations in the external environ-
ment �1,2�. For extracting a large conformational fluctuation,
which is believed to relate to the primary conformational
change by the perturbation, principal component analysis
�PCA� �3�, also called essential dynamics, has been generally
used in molecular dynamics �MD� simulations �4–8�. In gen-
eral, PCA is performed using Cartesian coordinates. Since
Cartesian coordinates depend on the overall molecular mo-
tion, translational and rotational motion have to be elimi-
nated before the calculation of the covariance matrix. Mo-
lecular translation can be eliminated uniquely by translating

the molecular center of mass to the origin. However, molecu-
lar rotation cannot be removed uniquely by least square fit-
ting to a certain reference structure, except the molecule fluc-
tuating around the single dominant state. This is because the
fitting result generally depends on the selected reference
structure �9–11�. We refer to this problem as “frame fitting
problem” in this study. To avoid the frame fitting problem,
several PCAs using internal coordinates, which is indepen-
dent of the overall molecular motion, have been proposed
such as the dihedral angle PCA �dPCA� �12,13� and a PCA
using pairwise atomic distances �11�. The dihedral angle rep-
resents an important internal coordinate for proteins. How-
ever, it is difficult to apply the dPCA to other molecules such
as nucleic acids. PCA using pairwise atomic distances have
general applicability, but their physical meaning is unclear.
Furthermore, these methods do not directly relate the identi-
fied large conformational fluctuations with the conforma-
tional change induced by the environmental perturbation
such as ligand binding. Therefore, a formulation for charac-

*ym.koyama@gmail.com
†uedah-tky@umin.ac.jp

PHYSICAL REVIEW E 78, 046702 �2008�

1539-3755/2008/78�4�/046702�11� ©2008 The American Physical Society046702-1

http://dx.doi.org/10.1103/PhysRevE.78.046702


terizing conformational fluctuations, which �a� achieves gen-
eral applicability, �b� describes its physical meaning, and �c�
predicts the conformational change by the perturbation is
unavailable.

Some previous studies more directly tried to relate con-
formational fluctuations with the conformational change in-
duced by the environmental perturbation. Ikeguchi et al. �14�
applied linear response theory for predicting the average con-
formational change induced by constant force perturbations
from the covariance matrix of atomic coordinates in an un-
perturbed equilibrium state. Because they used Cartesian
atomic coordinates, their method also inherits the frame fit-
ting problem as in the case of Cartesian PCA, which limits
its applicability to molecules with a single dominant state.
Ming et al. �15,16� proposed quantifying the conformational
distribution change by the perturbation with the Kullback-
Leibler divergence. They used the harmonic approximation
of the unperturbed and the perturbed energy function, i.e.,
normal mode approximation, in which each equilibrium dis-
tribution becomes a multivariate normal distribution. By this
approximation, they estimate the Kullback-Leibler diver-
gence by deriving its analytical expression. Although appli-
cations of the Kullback-Leibler divergence are not limited to
the multivariate normal distributions, the normal mode ap-
proximation limits their method to conformational change
from a single-dominant state to another single-dominant state
by the perturbation. Therefore, a formulation that satisfies the
above mentioned three requirements �a�–�c� is still not avail-
able.

For developing such a formulation, we first introduce a
perturbation with arbitrary linearly independent perturbation
functions �Sec. II A�. We then quantify the conformational
distribution change by the Kullback-Leibler divergence,
which is naturally derived from large deviation theory �Sec.
II B�. Within the second order approximation of the
Kullback-Leibler divergence, the PCA can be naturally inter-
preted as a method for �1� decomposing a given perturbation
into perturbations that independently contribute to the con-
formational distribution change or �2� successively finding
the perturbation that induces the largest conformational dis-
tribution change �Sec. II C�. We then propose a PCA using
potential energy terms, which is designated as potential en-
ergy PCA �PEPCA�. The PEPCA gives general applicability
and clear physical meaning �Sec. II D�. For demonstrating its
power, we apply the PEPCA to an alanine dipeptide mol-
ecule in vacuum as a minimal model of a nonsingle domi-
nant conformational biomolecule �Sec. III�. Finally, we dis-
cuss the theoretical implications of our perturbational
formulation of PCA, and the applicability of the PEPCA to
larger molecules �Sec. IV�.

II. THEORY

A. Perturbation of a molecular system

We consider a molecular system that is described by the
potential energy V�q�, where q= �q1 , . . . ,q3N�T are the atomic
Cartesian coordinates and N is the number of atoms. Then,
the canonical distribution ��q� at temperature T is

��q� =
1

Z
e−V�q�/kBT, �1�

where kB and Z are the Boltzmann constant and the partition
function �normalizing constant�, respectively. We perturb the
molecular system using perturbation parameters �
= ��1 , . . . ,�M�T and linearly independent perturbation func-
tions f�q�= �f1�q� , . . . , fM�q��T as

V��q� = V�q� − kBT�
i=1

M

�i f i�q� . �2�

Then, the perturbed canonical distribution ���q� is

���q� =
1

Z�

e−V��q�/kBT = e�·f�q�−������q� , �3�

where we define

���� � ln
Z�

Z
= ln�e�·f� , �4�

and �¯� indicates the average under ��q�. We consider the �
region where ���� exists. This representation enables us to
consider the perturbed distribution �Eq. �3�� as an exponen-
tial family, which is broadly studied in statistics �17–21�. In
the theory of the exponential family, �, f�q�, and ���� are
called natural parameters, sufficient statistics, and cumulant
generating function, respectively. The nth derivative of the
cumulant generating function 	�i1¯in

��0�� �n����
��in

¯��i1
	�=�0

is

known as the nth cumulant. In particular, the first cumulant is
the average �i���= �f i��, and the second cumulant is the co-
variance �ij���= ��f i− �f i����f j − �f j�����, where �¯�� indi-
cates the average under ���q�. �¯�0 is equivalent to �¯�.

B. Quantification of the conformational distribution
change by the perturbation

For quantifying the conformational distribution change in-
duced by the perturbation, we use the Kullback-Leibler di-
vergence �15–17,21–24�, which naturally appears in Sanov’s
theorem in large deviation theory �21,23,25,26�, and is de-
fined as

D��� 
 �� � � ���q�ln
���q�
��q�

dq � 0. �5�

The Kullback-Leibler divergence is non-negative, equals
zero if and only if two distributions are identical, and is
generally asymmetric with respect to the exchange of the two
distributions. Using Eq. �3�, Eq. �5� is represented as

D���
�� = � · �f�� − ���� = �
i=1

M

�i�i��� − ���� . �6�

By using the Taylor expansions of �i��� and ���� around the
origin, Eq. �6� is expanded as
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D���
�� =
1

2 �
i,j=1

M

�ij�0��i� j +
1

3 �
i,j,k=1

M

�ijk�0��i� j�k + ¯ ,

�7�

the nth order coefficient is 1
�n−2�!n . The Kullback-Leibler di-

vergence can also be represented by �f�� instead of � as
shown in Appendix A.

C. Perturbational formulation of principal component analysis

Here, we consider a PCA with respect to the conforma-
tional distribution change induced by the perturbations for-
mulated in the preceding sections. We denote the covariance
matrix of f�q� in an unperturbed distribution ��q� as C,
where Cij =�ij�0�= ��f i− �f i���f j − �f j���. Since the covariance
matrix is a positive definite matrix �we assume each variance
of f i�q� is nonzero, i.e., not constant�, we can diagonalize the
matrix using the orthogonal matrix U= �u1 , . . . ,uM� and posi-
tive eigenvalues �i

2. We assume the eigenvalues are sorted in
descending order. On the basis of the eigenvectors, the
Kullback-Leibler divergence in the second order approxima-
tion �Eq. �7�� is represented as

D���
�� �
1

2
�TC� =

1

2
�UT��T�UTCU��UT�� =

1

2�
i=1

M

�i
2�i

2,

�8�

where we define

� � UT� , �9�

which are the perturbation parameters corresponding to the
eigenvectors. Thus, within the second order approximation
of the Kullback-Leibler divergence, the given perturbation �
is decomposed into the perturbations �i, which independently
contribute to the Kullback-Leibler divergence by 1

2�i
2�i

2.
Therefore, the eigenvalue �i

2 measures the conformational
distribution change induced by the decomposed perturbation
�i. Components of the eigenvector ui identifies the combina-
tions of the perturbation functions that induces the decom-
posed perturbation �i.

Since the covariance matrix is symmetric, the ith eigen-
vector ui can be also characterized variationally as �, which
maximizes �TC� with constraints 	�	=const and u j ·�=0, j
=1, . . . , i−1 �3,27�. The second order approximation of the
Kullback-Leibler divergence is in the quadratic form 1

2�TC�.
Therefore, we can interpret the diagonalization of the cova-
riance matrix by successively finding the perturbation �
which maximizes the Kullback-Leibler divergence D��� 
��
under the constraints

	�	 = �, � such that the second order,

approximation of D���
�� is valid, �10a�

u j · � = 0, j = 1, . . . ,i − 1. �10b�

Equivalently, it can be expressed as

max
	�	=�

uj·�=0,j=1,. . .,i−1

D���
�� � max
	�	=�

uj·�=0,j=1,. . .,i−1

1

2
�TC�

=
1

2
��ui�TC��ui� =

1

2
�2�i

2. �11�

From Eq. �3�, the probability change of q induced by the
perturbation � can be represented as

ln
���q�
��q�

= � · f�q� − ����

= � · f�q� − 
�f� · � +
1

2
�TC� + ¯ �

= g�q� · � −
1

2�
i=1

M

�i
2�i

2 − ¯ �12�

=�
i=1

M 
gi�q��i −
1

2
�i

2�i
2� − ¯ , �13�

where we define g�q�= �g1�q� , . . . ,gM�q��T as

g�q� � UT�f�q� − �f�� . �14�

These functions g�q� can be considered as the principal com-
ponents of f�q� under ��q�. Thus, in the second order ap-
proximation of the Kullback-Leibler divergence, the prob-
ability change induced by the perturbation �i is determined
only by the ith principal component gi�q� and the ith eigen-
value �i

2. Moreover, for the perturbation where the first order
approximation of the cumulant generating function is valid,
the probability change is determined only by the ith principal
component. Perturbation �i�0 increases the probability of q
where gi�q��0, and decreases q where gi�q�	0. Equation
�14� indicates that these principal components g�q� are

�gi� = 0, �15�

�gigj� = �i
2�i,j . �16�

Thus, the principal components make orthogonal functions
with respect to the inner product

�gi,gj� � � gi�q�gj�q���q�dq . �17�

In summary, in our perturbational formulation, within the
second order approximation of the Kullback-Leibler diver-
gence, the PCA can be interpreted as a method for �1� de-
composing a given perturbation � into perturbations that in-
dependently contribute to the conformational distribution
change measured by the Kullback-Leibler divergence or �2�
successively finding the perturbation that induces the largest
conformational distribution change under the constraints
�Eqs. �10��. Then, �i� the eigenvalue �i

2 measures the
Kullback-Leibler divergence by the perturbation �i as 1

2�i
2�i

2

�Eq. �8��. �ii� Eigenvector ui identifies the combination of
perturbation functions that induces the ith largest conforma-
tional distribution change. �iii� The principal component
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gi�q� determines the probability change of q induced by the
perturbation �i �Eq. �13��. In Appendix B, we give perturba-
tional formulations of Cartesian PCA and dPCA.

D. Perturbation of potential energy terms

To develop a PCA that satisfies the three requirements
�a�–�c� mentioned in the Introduction, we consider a pertur-
bation of potential energy terms. We perturb some potential
energy terms

V�q� = �V1�q�, . . . ,VM�q��T �18�

in potential energy V�q� with perturbation term in Eq. �2�

− kBT�
i=1

M

�i f i�q� = − �
i=1

M

�iVi�q� . �19�

This perturbation changes the weight of the potential energy
term Vi by �1−�i�. This gives perturbation functions

f�q� = 
V1�q�
kBT

, . . . ,
VM�q�

kBT
�T

. �20�

Thus, a PCA using these perturbation functions �PEPCA� can
be interpreted as a method for �1� decomposing a given po-
tential energy terms perturbation �Eq. �19�� into perturbations
that independently contribute to the conformational distribu-
tion change or �2� successively finding the potential energy
terms perturbation �Eq. �19�� that induces the largest confor-
mational distribution change under the constraints Eqs. �10�.
Since the potential energy terms are always defined in MD
simulations, and they are invariant with respect to the overall
molecular motion, the requirement �a� in the Introduction is
satisfied. A potential energy term represents the molecular
interaction, therefore, the requirement �b� is satisfied. The
requirement �c� is automatically satisfied in our perturba-
tional formulation.

Perturbation �i=1 eliminates the potential energy term Vi.
� corresponding to �= �1, . . . ,1�T is

� = UT� = UT�1, . . . ,1�T = 
�
i=1

M

Ui1, . . . ,�
i=1

M

UiM�T

.

�21�

We standardize the direction of the jth eigenvector u j as
�i=1

M Uij �0 for convenience, because the direction of the ei-
genvector does not change the result. If we perturb � j direc-
tion, i.e., �=� ju j, then the perturbation term Eq. �19� is rep-
resented as

− �
i=1

M

�iVi�q� = − �
i=1

M

� jUijVi�q� . �22�

Therefore the perturbation � j �0 strengthens the ith potential
energy term Vi if Uij 	0, and it weakens the term if Uij �0.
As discussed in Sec. II C, perturbation � j �0 increases the
probability of q if gj�q��0, and decreases it if gj�q�	0, in
the first order approximation of ����. These results are sum-
marized in Table I. Thus, we can identify the combination of
potential energy terms stabilizing q, where gj�q�	0 by Uij

�0, and gj�q��0 by Uij 	0. Therefore, the magnitude and
the sign of the eigenvectors provide important information in
the PEPCA. Moreover, we can investigate the detailed infor-
mation of potential energy term, such as attractive or repul-
sive electrostatic interaction.

Next, we consider some concrete potential energy terms
to perturb. Currently, the most commonly used biomolecular
potential energy �28� has a functional form

V�q� = �
b�bonds

Kb�rb − r̄b�2 + �
a�angles

Ka�
a − 
̄a�2

+ �
d�dihedrals

Kd�cos�nd�d − �d� + 1�

+ �
�i,j��nonbonds


 Aij

rij
12 −

Bij

rij
6� + �

�i,j��nonbonds

QiQj


rij
.

�23�

Each term corresponds to the bond, angle, dihedral, van der
Waals, and electrostatic potential energy terms, respectively.
We can select all or some �e.g., nonbonded interactions only�
of the potential energy terms to perturb as

V�q� = 
�Kb�rb − r̄b�2	b � some bonds�,

�Ka�
a − 
̄a�2	a � some angles�,

�Kd�cos�nd�d − �d� + 1�	d � some dihedrals�,

� Aij

rij
12 −

Bij

rij
6 	�i, j� � some nonbonds�,

�QiQj


rij
	�i, j� � some nonbonds��T

. �24�

III. NUMERICAL RESULTS

For demonstrating the power of the theory, we apply the
PEPCA to an alanine dipeptide molecule in vacuum. We per-
formed 10 ns molecular dynamics simulation by integration
with a 2 fs time step. For generating a canonical ensemble at
300 K, Langevin dynamics with the collision frequency �
=1.0 ps−1 were used. We used molecular dynamics package
AMBER8 �29� to perform molecular dynamics simulation and

TABLE I. Effects of the perturbation � j in the potential energy
terms perturbation. Change in the weight of the potential energy
term Vi by � j is determined by Eq. �22�. The probability change of
q by � j is determined by Eq. �13�. The term “increase” or “de-
crease” indicates the probability change in the first order approxi-
mation of the cumulant generating function ����.

potential energy term Vi Probability of q

Uij �0 Uij 	0 gj�q��0 gj�q�	0

� j �0 weaken strengthen increase decrease

� j 	0 strengthen weaken decrease increase

KOYAMA et al. PHYSICAL REVIEW E 78, 046702 �2008�

046702-4



the ff03 force field �30� which has the functional form given
in Eq. �23�. We saved the coordinates at every 1 ps, and used
a total of 10,000 coordinates for the analysis. This molecule
has two stable states in our 10 ns simulation. The transition
between the two states occurred many times, and it equili-
brated well within the two states. For performing the
PEPCA, we developed a program that outputs the potential
energy terms from the topology and coordinates files. We use
all the potential energy terms for Eq. �18�, and index each of
them as in Table II. As indicated in Eq. �20�, all potential
energy terms are divided by kBT for PCA. PCA was per-
formed with the statistical computing environment R �31�.

Figure 1 shows the eigenvalues of the covariance matrix
of the potential energy terms divided by kBT. The largest
eigenvalue �1

2 is remarkably larger than the other eigenval-
ues. The second order approximation of the Kullback-Leibler
divergence is represented as Eq. �8�. Therefore, the perturba-
tion corresponding to the largest eigenvalue changes the con-
formational distribution remarkably, and the other perturba-
tions have less effect on the conformational distribution.

Therefore, we concentrate on analyzing the largest pertur-
bation �1. Figure 2�a� shows the sign of the first principal
component g1�q� on a Ramachandran plot, which clearly
characterizes the two stable states. As summarized in Table I,
the perturbation �1�0 increases the probability of q where

g1�q��0 �red in Fig. 2�a��, and decreases the probability of
q, where g1�q�	0 �blue in Fig. 2�a��, in the first order ap-
proximation. Therefore, the perturbation �1 controls the ratio
of the two stable states. As summarized in Table I, we can
identify the combination of interactions stabilizing the con-
formation q, where g1�q��0 �red in Fig. 2�a�� as the nega-
tive components of the first eigenvector �Ui1	0�. In details,
according to Table I, we first notify that the probability of the
conformation q, where g1�q��0 increases if �1�0. We then
notify that the potential energy term Vi is strengthened under
�1�0 if Ui1	0. We thus identify the interactions �Ui1	0�
which stabilize the conformation q where g1�q��0. Figure
2�b� shows that smaller negative components of the first ei-
genvector are el-6-17, el-5-18, and el-8-16. According to
Table III, el-8-16 is an attractive interaction while el-6-17
and el-5-18 are repulsive interactions. Conformation A �Figs.
2�a� and 2�b�� ascertains that the attractive interaction el-8-16
is an important stabilizing interaction. Interestingly, the con-
formation A also indicates that the extended �-like structure
is enhanced by repulsive interactions el-6-17 and el-5-18.
Similarly, the positive components of the first eigenvector
�Ui1�0� stabilizes the conformation q, where g1�q�	0
�blue in Fig. 2�a��. The larger positive component el-6-18 is
an attractive interaction �Figure 2�b� and Table III�. Confor-
mation B �Figs. 2�a� and 2�b�� ascertains that the attractive
interaction el-6-18 is an important stabilizing interaction.
Thus, the perturbation �1 controls the ratio of the two stable
states, i.e., the equilibrium constant of the two stable states.
The negative and the positive components of the first eigen-
vector clearly identifies the stabilizing interactions of the two
stable states.

Next, we analyze the second largest perturbation �2, al-
though its effect is smaller compared with that of the largest
perturbation �1. Figure 2�c� shows the sign of the second
principal component g2�q�. Interestingly, g2�q� clearly char-
acterizes the transition state region of the two stable states.
Therefore, the perturbation �2 controls the ratio between the
transition state and the two stable states. The smaller nega-
tive components of the second eigenvector �Ui2	0�, which
stabilize the conformation q where g2�q��0 �red in Fig.
2�c��, are attractive interactions el-5-16 and el-6-15 �Figure
2�d� and Table III�. Conformation TS �Figs. 2�c� and 2�d��
ascertains that attractive interactions el-5-16 and el-6-15 are
important stabilizing interactions. On the other hand, the
large positive component of the second eigenvector �Ui2
�0�, which stabilizes the conformation q where g2�q�	0
�blue in Fig. 2�c��, is a repulsive interaction el-6-16 �Figure
2�d� and Table III�. The conformation TS indicates that the
repulsive interaction el-6-16 destabilizes the transition state.
Therefore, el-6-16 relatively stabilizes the two stable states
�blue in Fig. 2�c�� by destabilizing the transition state �red in
Fig. 2�c��. Thus, the second largest perturbation �2 controls
the stability of the transition state of the two stable states,
i.e., the rate constant of the transition between the two stable
states. The negative and the positive components of the sec-
ond eigenvector identify the stabilizing interactions of the
transition state and the two stable states.

IV. DISCUSSION AND CONCLUSIONS

In this study, we clarified that within the second order
approximation of the Kullback-Leibler divergence, a PCA

TABLE II. Index of the potential energy terms of the alanine
dipeptide. 89, 90, 101, and 102 are the improper torsion potential
energy terms. 236–276 van der Waals and 410–450 electrostatic
potential energy terms are 1–4 interactions, and they are divided by
2.0 and 1.2 �these are default values in AMBER8 �29��, respectively.

Bond Angle Dihedral van der Waals Electrostatic

1–21 22–57 58–102 103–276 277–450

E
ig

en
va

lu
e

Index of the eigenvalue

FIG. 1. Eigenvalues of the covariance matrix of the potential
energy terms divided by kBT. Eigenvalues are sorted in descending
order. The inset figure shows the eigenvalues in log scale. First five
eigenvalues are 461.5, 16.3, 9.3, 5.7, and 5.3.
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can be interpreted as a method for �1� decomposing a given
perturbation into perturbations that independently contribute
to the conformational distribution change or �2� successively
finding the perturbation that induces the largest conforma-

tional distribution change. To achieve general applicability
and provide clear physical meaning of the perturbation, we
introduced a perturbation of potential energy terms, which
leads to the PEPCA. The effectiveness of the PEPCA was
demonstrated using alanine dipeptide as a minimal model of
a nonsingle dominant state behavior biomolecule.

To apply the PEPCA to larger molecules, we must inves-
tigate some practical aspects that were not addressed in this
paper. First, water molecules are not incorporated in our MD
simulation. For more practical simulation, it is important to
explicitly incorporate water molecules in MD simulation.
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FIG. 2. �Color� The sign of �a� the first �g1�q�� and �c� the second �g2�q�� principal component on a Ramachandran plot. Red and blue
points show gi�q��0 and gi�q�	0, respectively. The dihedral angles � and � are defined by atom indices 5-7-9-15 and 7-9-15-17,
respectively. The 3D structures labeled A, B, and TS show snapshots of the MD simulation indicated by the black lines. The 3D structures
were rendered by VMD �32�. Cyan, white, red, and blue spheres indicate the C, H, O, and N atoms, respectively. The components of �b� the
first and �d� the second eigenvectors. Label el-6-18 indicates the component of the electrostatic potential energy term between atom 6 and
atom 18. Such labels are captioned where the absolute value of the component is larger than 0.3.

TABLE III. Charge �electron charge units� of the numbered at-
oms in Figs. 2�b� and 2�d�.

5�C� 6�O� 8�H� 15�C� 16�O� 17�N� 18�H�

0.512 −0.550 0.294 0.570 −0.555 −0.424 0.290

KOYAMA et al. PHYSICAL REVIEW E 78, 046702 �2008�

046702-6



Here we represent the biomolecular coordinates q and the
water coordinates q�. If we only perturb the biomolecules,
i.e., perturbation functions depend only on q, then the per-
turbed marginal distribution of q is

���q� =� ���q,q��dq� =� e�·f�q�−������q,q��dq�

= e�·f�q�−������q� . �25�

This is the same distribution as Eq. �3�. Therefore, our per-
turbational formulation of PCA is valid without any modifi-
cation in explicit water simulation if we only perturb the
biomolecular coordinates.

Second, sufficient conformational sampling is required
because insufficient conformational sampling results in poor
estimations of the principal components. This problem has
been intensively challenged at least by three different ap-
proaches. The first is employment of more efficient sampling
algorithms such as extended ensemble algorithms �33,34�,
the second is the development of the algorithm for improving
the parallel scalability of the cluster computer for MD simu-
lation �35,36�, and the last is design of fast special-purpose
hardware for MD simulation �37,38�. By combining these
approaches, the insufficient conformational sampling prob-
lem may be solved in the near future. At that time, analysis
method of the MD simulation data will become more impor-
tant.

Third, computational feasibility of diagonalization of the
covariance matrix is a problem in PCA. The atom number N
of an ordinary protein is 103–104. If we perturb all the
atomic potential energy terms in the protein molecule, then
the size of the covariance matrix is N2�106–108. Such a
large matrix is difficult to diagonalize with the existing com-
putational power. Instead of perturbing each atomic potential
energy term, we can perturb some potential energy terms at a
time. For example, we can consider groups of atoms such as
amino acids or bases, then perturb the intergroup nonbonded
potential energy terms simultaneously. If we consider amino
acid as one such group, then the group size, i.e., the amino
acid number Na is 102–103 and the size of the covariance
matrix is Na

2�104–106. Thus the diagonalization is feasible.
In this analysis, we can identify the important combinations
of the intergroup interactions contributing to conformational
distribution change. Note that Kong et al. �39� used residue-
based interaction-correlation matrix to study the signal-
transduction mechanism of rhodopsin. In this respect, our
PEPCA method is considered to be a covariance matrix
counterpart of their interaction correlation matrix analysis.
As another way to reduce the matrix size, we can use the
Gram matrix diagonalization instead of the covariance ma-
trix. This is because the formal equivalence between the
PCA using perturbation functions and the kernel PCA �40�
holds as shown in Appendix C. Since the Gram matrix de-
pends only on the sample data size, the Gram matrix diago-
nalization may be useful when the number of the perturba-
tion functions is larger than the sample data size. This
equivalence between the PCA using perturbation functions
and the kernel PCA may also provide the physical meaning
to some dimension reduction methods. It is known that sev-

eral dimension reduction methods, such as metric multidi-
mensional scaling �metric MDS �41�, also known as princi-
pal coordinate analysis �3,42��, Isomap �43�, Laplacian
eigenmap �44�, and locally linear embedding �LLE� �45� are
interpreted as kernel PCA �46,47�. Therefore, it may be in-
teresting to interpret these dimensional reduction methods
with our perturbational formulation, because the perturbation
may have a clearer physical meaning than the kernel func-
tion. We also note that our perturbational formulation of
PCA provides the clearer limitation that is defined by the
second order approximation of the Kullback-Leibler diver-
gence in comparison with the kernel PCA.

Finally, we estimate the Kullback-Leibler divergence by
the perturbation from the unperturbed equilibrium state, i.e.,
a perturbation estimator only reweights the samples from the
unperturbed distribution. Therefore, if the perturbation
changes the conformational distribution into unsampled con-
formations in unperturbed equilibrium state, then the pertur-
bation estimation is invalid. Recently, it has been observed
that some proteins “sample” the functional conformations
under the unperturbed conformational fluctuation, which is
known as a “pre-existing” behavior �2,48�. As demonstrated
in Sec. III, our perturbational formulation of PCA is well
suited for pre-existing behavior. If a molecular function fol-
lows the pre-existing behavior, then the principal compo-
nents identify the functional substates, and their detailed
atomic interactions can be obtained from their eigenvectors.
From the components of the eigenvectors, we may be able to
identify the natural perturbation targets for molecular func-
tions, such as the ligand binding sites, which induce the large
conformational distribution change �16�. Thus, while we
need more investigations for larger molecules, PCA can be
applied, by carefully selecting the perturbation functions, not
only to identify the molecular conformational fluctuation but
also to predict the conformational distribution change by the
perturbation beyond the limitation of the previous methods.
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APPENDIX A: EXPECTATION PARAMETER
REPRESENTATION OF THE KULLBACK-

LEIBLER DIVERGENCE

Equation �6� indicates that D��� 
�� is the Legendre trans-
formation of ����. Therefore, �f�� and � have a one-to-one
correspondence. As a result, we can use �f�� for specifying
the perturbed distribution ���q� instead of �. In this respect,
�f�� are called expectation parameters �20�. Because of
Cramér’s theorem in large deviation theory �23,26�, the Leg-
endre transformation of the cumulant generating function
���� is also a rate function ���f���. Therefore, the equality
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���f��� = D��� 
 �� �A1�

holds. This relation between the rate function and the
Kullback-Leibler divergence is a direct consequence of the
contraction principle in large deviation theory �23,26�, which
states that the rate function is obtained by minimization of
the Kullback-Leibler divergence D��� 
�� under the probabil-
ity distribution ���q� which has given averages of statistics
f�q�. Since the exponential family �Eq. �3�� is the solution of
such minimization, the above equality holds. In this interpre-
tation, � indicate the Lagrange multipliers of the constraints
for the averages.

Equation �3� indicates that the probability change of q by
the perturbation � is determined by � · f�q�−����, and � ·y
−����=0 defines the hyperplane in which the probability of
q does not change by the perturbation �. We can show that
the inequality

� · �f� � ���� � � · �f�� �A2�

holds. The left inequality is from Eq. �4� with Jensen’s in-
equality. The right inequality follows Eq. �6� with the non-
negativity of the Kullback-Leibler divergence �Eq. �5��. Note
that this inequality is considered to be a multidimensional
perturbation version of the Gibbs-Bogoliubov inequality
�49�. The inequality �A2� shows that the hyperplane � ·y
−����=0 is located between � · �y− �f��=0 and � · �y− �f���
=0. Because � is a gradient of ��y� at y= �f��, � · �y− �f���
=0 is the tangent hyperplane of the contour of ��y� at y
= �f��. The inequality �A2� also indicates that for a certain
0������1, the equality

���� = � · �f������ �A3�

holds. We can show that this equality leads to

D������� 
 �� = D������� 
 ��� � C��,��� , �A4�

where C�� ,��� is known as the Chernoff information
�24,50,51�. Therefore, � ·y−����=� · �y− �f�������=0 is the
tangent hyperplane of the contour of ��y�=C�� ,��� at y
= �f������. The relationship of the hyperplanes and the con-

tours of the Kullback-Leibler divergence is summarized in
Fig. 3.

Within the second order approximation of the cumulant
generating function ����, � can be expressed by �f�� as

� � C−1��f�� − �f�� . �A5�

With this, Eq. �7� can be represented as

���f��� = D��� 
 �� �
1

2
��f�� − �f��TC−1��f�� − �f�� .

�A6�

Note that

���f�� − �f��TC−1��f�� − �f�� �A7�

is known as the Mahalanobis distance �3,41�. With Eq. �14�,
Eq. �A6� can be represented as

���f��� �
1

2
�g��

TUTC−1U�g�� �
1

2�
i=1

M �gi��
2

�i
2 . �A8�

With Eqs. �8�, �A6�, and �A8�, contours of the Kullback-
Leibler divergence with � and �f�� representation are shown
in Fig. 4.

APPENDIX B: PERTURBATIONAL FORMULATION
OF CARTESIAN PCA AND DPCA

We consider perturbational formulations of Cartesian
PCA and dPCA. In Cartesian PCA, PCA is performed in
Cartesian coordinate space such as the NC C� atoms of the
protein molecule
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�

�

� � � � � � � �
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FIG. 3. Hyperplanes determining the probability change of q by
the perturbation � and contours of the Kullback-Leibler divergence.
The solid line shows the hyperplane � ·y−����=0 which separates
the increases or decreases of the probability change of q by the
perturbation �. The solid and broken ellipses show the contours of
the Kullback-Leibler divergence of ��y�=C�� ,��� and ��y�
=D��� 
��, respectively.
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FIG. 4. Contours of the Kullback-Leibler divergence and eigen-
vectors. Within the second order approximation of the Kullback-
Leibler divergence, the contours of the Kullback-Leibler divergence
make ellipsoids and eigenvectors corresponding to the principal
axes of ellipsoids �Eqs. �8�, �A6�, and �A8��. �a� � �natural param-
eters in the exponential family� representation of the Kullback-
Leibler divergence. The Kullback-Leibler divergence in the second
order approximation with � representation is Eq. �8�. Axes �1 and �2

correspond to the first and second eigenvectors, respectively. �=0
corresponds to the unperturbed distribution. �b� �f�� �expectation
parameters in the exponential family� representation of the
Kullback-Leibler divergence, i.e., rate function ���f��� �Eq. �A1��.
The second order approximation of the Kullback-Leibler divergence
with �f�� representation is Eq. �A6�. Axes z1 and z2 correspond to
the first and second principal components, respectively �Eq. �A8��.
y= �f� corresponds to the unperturbed distribution.
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f�q� = �q1, . . . ,q3NC
�T. �B1�

Then, the perturbation term in Eq. �2� is represented as

− kBT�
i=1

M

�i f i�q� = − kBT�
i=1

3NC

�iqi. �B2�

This means that the coordinate qi is perturbed by the constant
force kBT�i. Therefore, the Cartesian PCA can be interpreted
as a method for �1� decomposing a given constant forces
perturbation �Eq. �B2�� into perturbations that independently
contribute to the conformational distribution change or �2�
successively finding the constant forces perturbation �Eq.
�B2�� that induces the largest conformational distribution
change under the constraints Eqs. �10�. The former interpre-
tation is already known �14�. However, it is always necessary
to pay attention to the frame fitting problem when using the
Cartesian PCA.

To avoid the frame fitting problem, dihedral angles
�1 , . . . ,�Nd

were used in PCA �52�. However, the direct use
of the dihedral angle is problematic because of the periodic-
ity of the dihedral angles. dPCA �12,13� solves this period-
icity problem by performing PCA in the mapped dihedral
angle space

f�q� = �cos �1,sin �1, . . . ,cos �Nd
,sin �Nd

�T �B3�

instead of the dihedral angle space. Then, the perturbation
term in Eq. �2� can be represented as

− kBT�
i=1

M

�i f i�q� = − kBT�
i=1

Nd

��2i−1 cos �i + �2i sin �i�

= − kBT�
i=1

Nd

ki cos��i − �i� . �B4�

To clarify the physical meaning of the perturbation, we in-
troduced k= �k1 , . . . ,kNd

�T and �= ��1 , . . . ,�Nd
�T as polar co-

ordinates of � such that ��2i−1 ,�2i�T= �ki cos �i ,ki sin �i�T.
Since � and �k ,�� show one-to-one correspondence, the
constraints Eqs. �10� can also be represented by k and �
instead of �. For this purpose, we calculate

	�	2 = �
i=1

Nd

��ki cos �i�2 + �ki sin �i�2� = 	k	2 �B5�

and if we represent the jth eigenvector u j by k�j� and ��j�,
then

u j · � = �
l=1

Nd

��kl
�j� cos �l

�j���kl cos �l� + �kl
�j� sin �l

�j���kl sin �l��

= �
l=1

Nd

kl
�j�kl cos��l

�j� − �l� . �B6�

With these expressions, the constraints Eqs. �10� are repre-
sented as

	k	 = �, � such that the second order

approximation of D��k,�
�� is valid, �B7a�

�
l=1

Nd

kl
�j�kl cos��l

�j� − �l� = 0, j = 1, . . . ,i − 1, �B7b�

in terms of k and �. Thus, the dPCA can be interpreted as a
method for �1� decomposing a given dihedral angles pertur-
bation �Eq. �B4�� into perturbations that independently con-
tribute to the conformational distribution change or �2� suc-
cessively finding the dihedral angles perturbation �Eq. �B4��
that induces the largest conformational distribution change
under the constraints Eqs. �B7�. Above derivation of the per-
turbational formulation of dPCA also demonstrates the gen-
eral procedure for inventing a PCA which is free from the
frame fitting problem as follows. First, introduce a physically
meaningful perturbation which perturbing some internal co-
ordinates. Second, divide the perturbation as the perturbation
term in Eq. �2�. Finally, perform PCA using f�q�. Introduc-
tion of the PEPCA in Sec. II D also follows this procedure.

APPENDIX C: RELATIONSHIP
TO THE KERNEL PCA

We noticed a formal equivalence between the PCA using
the perturbation functions developed in Sec. II C and the
kernel PCA �40�, because each methods can be interpreted as
the PCA in a mapped space f�q� �this space is called feature
space in the kernel method� instead of q. To show this
equivalence, we briefly introduce the kernel PCA in our no-
tation. We consider n point data �q1 , . . . ,qn�, and their cen-
tered mapped data matrix

D̃ � �f̃�q1�, . . . , f̃�qn�� , �C1�

where centered mapped data is

f̃�qi� � f�qi� −
1

n
�
l=1

n

f�ql� . �C2�

We represent the centered mapped data matrix D̃ by singular
value decomposition �27� as

D̃ = �
i=1

r

�n�iuivi
T, �C3�

where r, �n�i, U= �u1 , . . . ,ur�, and V= �v1 , . . . ,vr� are the

rank of D̃, singular values, left singular vectors, and right
singular vectors, respectively. In this representation, the co-
variance matrix of the mapped data is

C �
1

n
D̃D̃T = �

i=1

r

�i
2uiui

T. �C4�

C is an M �M matrix, whose size depends on the dimension
M of the mapped space. The above equation indicates that
the eigenvalues and the eigenvectors of C give �i

2 and ui,
respectively. In our PCA using perturbation functions, this
diagonalization is performed. On the other hand, in the ker-

nel PCA, the centered Gram matrix G̃
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G̃ � D̃TD̃ = �
i=1

r

n�i
2vivi

T �C5�

is diagonalized instead of the covariance matrix C. G̃ is a
n�n matrix, whose size depends on the data size n. With
Eqs. �C1�, �C2�, and �C5�, the element of the centered Gram

matrix G̃ij can be represented as

G̃ij = f̃�qi� · f̃�q j� = k̃�qi,q j� = k�qi,q j� −
1

n
�
m=1

n

k�qi,qm�

−
1

n
�
l=1

n

k�ql,q j� +
1

n2 �
l,m=1

n

k�ql,qm� , �C6�

where we introduced the kernel function k�q ,q��

k�q,q�� � f�q� · f�q�� �C7�

and the centered kernel function k̃�q ,q��

k̃�q,q�� � f̃�q� · f̃�q�� . �C8�

Thus, the centered Gram matrix G̃ �and also centered kernel

function k̃�q ,q��� can be calculated using the kernel function
k�q ,q��, and the explicit functional form of f�q� is not re-
quired. As a first selection of the kernel function, the poly-
nomial kernel

k�q,q�� = �q · q� + c�d �C9�

and the Gaussian kernel

k�q,q�� = e−	q − q�	2/2�2
, �C10�

are often used in the kernel method. In particular, the Gauss-
ian kernel has infinite dimensional feature space. We can see
from Eq. �C5�, the eigenvalues and the eigenvectors of the

centered Gram matrix G̃ are n�i
2 and vi, respectively. There-

fore, by dividing eigenvalues n�i
2 of G̃ by data size n, we

can obtain the eigenvalue �i
2 of C. The eigenvectors to be

determined are not vi but ui. From Eq. �C3�, u j can be rep-
resented as

u j =
D̃v j

�n� j

=

�
i=1

n

Vijf̃�qi�

�n� j

. �C11�

With this expression, the jth principal component gj�q� is
represented as

gj�q� � u j · f̃�q� =
�i=1

n Vijf̃�qi� · f̃�q�
�n� j

=
�i=1

n Vijk̃�qi,q�
�n� j

.

�C12�

Thus, in the kernel PCA, the eigenvalues �i
2 and the principal

components g�q� can be calculated by the diagonalization of
the centered Gram matrix G̃, which can be evaluated by the
kernel function. On the other hand, Eq. �C11� indicates that
the eigenvectors ui require the explicit functional form of
f�q�.

For example, a homogeneous polynomial kernel of degree
two, i.e., c=0 and d=2 in Eq. �C9�, is represented as

k�q,q�� = �q · q��2 = �
i=1

3NC

qi
2qi�

2 + 2 �
1�i	j�3NC

qiqjqi�qj�

= f�q� · f�q�� , �C13�

where

f�q� = ��qi
2	i = 1, . . . ,3NC�,��2qiqj	1 � i 	 j � 3NC��T.

�C14�

In our perturbational formulation of PCA, this perturbation
functions f�q� give the harmonic perturbation around the ori-
gin. The polynomial kernel �Eq. �C9�� and the Gaussian ker-
nel �Eq. �C10�� in Cartesian coordinates were applied in the
MD simulation �53�. However, using Cartesian coordinates
leads to the frame fitting problem, as in the case of the Car-
tesian PCA. It is desirable to use the invariant kernel func-
tion with respect to the overall molecular motion. For this
purpose, it may be useful to perform the kernel PCA with a
kernel function such as the polynomial kernel �Eq. �C9�� and
the Gaussian kernel �Eq. �C10�� with respect to the mapped
dihedral angle space �Eq. �B3�� or potential energy term
space �Eq. �20��.
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