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Abstract 

Understanding synaptic dynamics during the sleep–wake cycle in the cortex is crucial 

yet remains controversial. The synaptic homeostasis hypothesis (SHY) suggests syn-

aptic depression during non-rapid eye movement (NREM) sleep, while other studies 

report synaptic potentiation or synaptic changes during NREM sleep depending on 

activities in wakefulness. To find boundary conditions between these contradictory 

observations, we focused on learning rules and firing patterns that contribute to 

the synaptic dynamics. Using computational models considering mammalian cor-

tical neurons, we found that under Hebbian and spike-timing dependent plasticity 

(STDP), wake-like firing patterns decrease synaptic weights, while sleep-like pat-

terns strengthen synaptic weights. We refer to this tendency as Wake Inhibition and 

Sleep Excitation (WISE). Conversely, under Anti-Hebbian and Anti-STDP, synaptic 

depression during NREM sleep was observed, aligning with the conventional syn-

aptic homeostasis hypothesis. Moreover, synaptic changes depended on firing rate 

differences between NREM sleep and wakefulness. We provide a unified framework 

that could explain synaptic homeodynamics under the sleep–wake cycle.

Introduction

During wakefulness, organisms perceive external worlds through the five senses 
to learn and take appropriate actions. During sleep, organisms disconnect from the 
environment to reorganize memory and recover from fatigue. Recent studies have 
revealed that cortical neurons are responsible for these brain functions underlying 
learning and memory formation [1] and that the dynamics of the cortical synaptic 
weights are associated with the sleep–wake cycle [2,3]. A hypothesis known as the 
synaptic homeostasis hypothesis (SHY) proposed that wakefulness potentiates syn-
apses through learning with the costs of higher energy demand while the sleep state 
depresses less important synapses to restore synaptic homeostasis [2]. However, 
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the dynamics of synaptic weights in the sleep–wake cycle, especially during sleep, 
remain controversial. Several studies have demonstrated that NREM sleep potenti-
ates synapses, contributing to memory consolidation. Others have reported extended 
wakefulness or sleep deprivation results in a loss of spines or reduced excitability in 
some brain regions [4–7]. Furthermore, SHY suggests that synapses strengthened 
during wakefulness are less susceptible to synaptic depression during NREM sleep 
[2]. In contrast, other studies propose the normalization of neuronal activities, where 
fast-firing neurons and slow-firing neurons during wakefulness are weakened and 
strengthened, respectively, during NREM sleep [8]. We sought to find the boundary 
conditions that reconcile these discrepancies and to comprehensively understand the 
sleep–wake synaptic dynamics.

The heterogeneity of brain states can confound in vivo studies because the slow-
wave oscillation (SWO), that is a characteristic firing pattern of NREM sleep, also 
occurs in wakefulness and sleep states include REM sleep, which has wake-like firing 
patterns [9,10]. To address this issue, we developed computational models to inves-
tigate the direct relationships between synaptic weights and neuronal firing patterns 
characteristic of each brain state. To account for the diversity of neurons and obtain 
more robust conclusions that generalize across brain regions and even different 
species, computational simulations were conducted with different types of models and 
numerous randomly generated parameters. We prepared sleep- and wake-like firing 
patterns based on in vivo experiments, and devised a unified function that recapit-
ulates typical synaptic learning rules in the cortex for updating the synaptic weights 
[11]. These settings allowed us to simulate the dynamics of synaptic weights under 
specific types of spike trains, such as burst firing, based on synaptic learning rules 
[12]. The synaptic learning rules we studied include the Hebbian rule, STDP, and their 
reverse types (Anti-Hebbian and Anti-STDP). According to the Hebbian rule, a synaptic 
connection between two neurons strengthens when pre- and post-synaptic neurons 
fire simultaneously [13]. A temporally asymmetric form of Hebbian rule is STDP. The 
classical STDP describes that synaptic potentiation occurs when pre-synaptic spikes 
precede post-synaptic spikes within a certain temporal window, while synaptic depres-
sion occurs in post-synaptic spikes precede pre-synaptic spikes [14,15]. Reverse types 
of these (Anti-Hebbian and Anti-STDP) are also observed in the mammalian cortex 
[16]. Such learning rules lead to synaptic depression when synapses are presented 
with correlated activity, serving critical functions in the discrimination of specific spike 
sequences and the detection of novel stimuli [17–20].

Our simulations revealed that synaptic weights become higher in sleep-like 
synchronized states than in wake-like desynchronized states under Hebbian and 
classical STDP, assuming the same mean firing rates for both sleep- and wake-like 
firing patterns. We refer to these dynamics as Wake Inhibition and Sleep Excitation 
(WISE). In contrast, synaptic depressions during sleep-like firing patterns, which 
represents SHY, were observed under Anti-Hebbian and Anti-STDP. Moreover, our 
results suggested that the synaptic dynamics also depend on mean firing rates, pro-
viding a unified framework for the synaptic homeodynamics of neural networks during 
the sleep–wake cycle.
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Results

WISE under Hebbian and STDP, SHY under anti-Hebbian and anti-STDP

To investigate synaptic dynamics in NREM sleep and wakefulness with synaptic learning rules, we used a Ca2+-based 
plasticity model. Graupner and colleagues proposed that the Ca2+-based plasticity model with two thresholds for post- 
synaptic Ca2+ can describe the various types of synaptic learning rules [21]. Based on Graupner’s model, we developed a 
modified Ca2+-based plasticity model to represent four different types of learning rules (Hebbian, STDP, Anti-Hebbian, and 
Anti-STDP) by setting eight parameters (θp: potentiation threshold, θd: depression threshold, γp: potentiation amplitude, γd
: depression amplitude, τpre: time constant for Ca2+ from N-methyl-D-aspartate receptor (NMDAR), τpost: time constant for 
Ca2+ from Voltage-gated Ca2+ channel (VGCC), σ: amplitude for noise, and τs: time constant for synaptic change) (Fig 1A). 
Synaptic weights were defined as being linearly related to synaptic efficacy (ρ) as w = w

0
 + ρ(w

1
 − w

0
), where w

0
 and w

1
 are 

minimum and maximum synaptic weights, respectively. ρ is described by a first order differential equation according to the 
previous article (“Materials and methods, Modeling synaptic learning rules”) [21]. We confirmed that our model could predict 
the experimentally observed changes of post-synaptic Ca2+ and synaptic strength under stimulations with different time lags 
(Fig 1B and 1C). We randomly generated more than 1 million parameter sets and selected 1,000 parameter sets that well 
represent either one of four learning rules (Fig 1D and 1E, “Materials and methods, Parameter search for synaptic learning 
rules”). Each learning rule has a clear cluster in the distribution of thresholds and amplitudes (Fig 1F). The distributions of 
other parameters and those in other fitting conditions are shown in S1 Fig. To evaluate the change of synaptic weights during 
sleep-like and wake-like firing patterns, we assumed one post-synaptic neuron connected with 10 pre-synaptic neurons and 
the same mean firing rates both in sleep-like and wake-like patterns (Fig 1G). Sleep-like and wake-like firing patterns were 
derived from previous in vivo recordings [8,22] (“Materials and methods, Generation of sleep and wake-like spike patterns” 
and S18 Fig). Then, time changes in synaptic efficacy during the sleep-like and wake-like firing patterns were calculated 
and compared under synaptic learning rules. The mean synaptic efficacy became higher in sleep-like states than in wake-
like states under Hebbian and STDP, representing WISE (Fig 1H). The opposite results were observed in Anti-Hebbian and 
Anti-STDP, representing SHY. Thus, WISE and SHY are observed under the specific types of learning rules, with both states 
exhibiting equal mean firing rates. Hereafter, we focus on relative net changes of synaptic efficacy in a local network, and we 
define the decrease of the efficacy as SHY and the increase as WISE during the sleep-like state.

Robustness of WISE and SHY

Next, we investigated the robustness of the WISE and SHY in different settings. We first modified the previous model with 
one post-synaptic neuron connected by 10 pre-synaptic neurons to have 96 pre-synaptic neurons or random connec-
tions. This modified model still exhibited WISE under Hebbian and STDP, while it showed SHY under Anti-Hebbian and 
Anti-STDP (Fig 2A and 2B). Next, we tested modified parameters of time constants and amplitudes of learning rules to 
see if WISE and SHY depend on the properties of learning rules. Even in those settings, we found that these trends still 
held (Figs 2C and S3). In Fig 2D and 2E, we generated various sleep-like firing patterns by changing parameters such 
as the log

10
(mean inter-spike interval) (ISIM), log

10
(mean Up-state duration) (UPM), and log

10
(mean Down-state duration) 

(DOWNM). We tested ranges of parameters for each targeted mean firing rate by changing either DOWNM or ISIM (Fig 
2D and 2E). We found that the mean synaptic efficacy was higher in sleep-like states with most of the parameters in the 
tested range. Notably, this trend was more apparent at lower firing rates. These results validated that WISE and SHY were 
robust under various biologically feasible conditions.

WISE and SHY in Hodgkin–Huxley-based network models

We then tested whether WISE and SHY hold in a more realistic setting where the synaptic efficacy can change the firing 
pattern. To recapitulate the variable firing pattern, we introduced the Hodgkin–Huxley model to network models based on 
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Fig 1. WISE under Hebbian and STDP, SHY under Anti-Hebbian and Anti-STDP assuming the same firing rates during sleep-like and wake-like 
firing patterns. (A) Schematic illustration of the Ca2+-based plasticity model for synaptic learning rules. Ca2+ in a post-synaptic neuron was calculated by 
summing Ca2+ from NMDAR and VGCC. Synaptic efficacy (ρ) between neurons was updated by the concentration of Ca2+ in a post-synaptic neuron. (B) 
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our previous study [23,24], with a ratio of excitatory and inhibitory neurons of 4:1 (Fig 3A, see “Materials and methods, 
Hodgkin–Huxley-based network model”). In this study, we considered molecules responsible for generating SWO in three 
subcellular compartments (post-synaptic, intracellular (cell body), and pre-synaptic compartments) [23,25]. We assumed 
that NMDAR and VGCC function in post-synapses and cell bodies, respectively, for generating SWO [23]. In addition, 
because pre-synaptic transmission is crucial for generating SWO in the cortex [25], we modeled AMPAR, NMDAR, and 
GABAR to receive the neural transmission. Parameter searches for SWO and bifurcation analysis for a single neuron 
were based on previous articles [23]. First, we randomly generated parameter sets from a large parameter space within 
the biophysically feasible range and searched for parameter sets that yield firing patterns of SWO. Then, we searched 
for parameter sets that bifurcate from wake-like to sleep-like patterns as a network (Fig 3B, see “Materials and methods, 
Parameter search for SWO and bifurcation analysis in Hodgkin–Huxley-based network models”). Clear desynchronization 
and synchronization, evaluated by the coefficient of variance (CV) of spike counts per 50 ms (sleep score) (see “Materials 
and methods, Evaluation of synchronization and desynchronization in Hodgkin–Huxley-based network models”), were 
observed with parameter sets for each subcellular component (Figs 3C, 3D and S4). We then selected the parameter sets 
that showed almost the same mean firing rates in sleep-like and wake-like states and evaluated synaptic efficacy in the 
sleep-like and wake-like states (S6 and S7 Figs). WISE was observed under STDP (Fig 3E), while SHY was observed 
under Anti-STDP (Fig 3F). Similar trends were observed under Hebbian and Anti-Hebbian and in network models with 
different connections (S9 and S10 Figs). These results validated WISE and SHY in a realistic network model.

WISE under Hebbian and STDP and SHY under Anti-Hebbian and Anti-STDP is compatible with models including 
sleep–wake dynamics

Next, we incorporated the spontaneous sleep–wake cycle into our network models. Previous phosphoproteomic studies sug-
gested that phosphorylation of several synaptic proteins is associated with sleep needs [26–28]. The sleep needs increase 
during wakefulness and decreases with the onset of sleep. This homeostatic oscillation of sleep needs is referred to as 

The simulated concentration of Ca2+ in a post-synaptic neuron where a pair of stimulations with a short delay (20 ms) were given to two neurons under 
STDP. Two neurons represented by the equation (Eq. 1–10) were connected by a single unidirectional synapse. The parameters for STDP are shown 
in S8 Table. (C) The simulated dynamics of synaptic efficacy where two neurons were repeatedly stimulated at 60 Hz with a short delay (20 ms) under 
STDP. Two neurons represented by the equation (Eq. 1–10) were connected by a single unidirectional synapse. Synaptic weights were defined as being 
linearly related to synaptic efficacy (ρ) as w = w

0
 + ρ(w

1
 − w

0
), where w

0
 and w

1
 are minimum and maximum synaptic weights, respectively. The param-

eters for STDP are shown in S8 Table. (D) The procedure of parameter search for synaptic learning rules and calculation of synaptic efficacy during 
sleep-like and wake-like firing patterns. (E) The standardized synaptic changes of 1,000 parameter sets collected by parameter search for four types of 
learning rules. Two neurons represented by the equation (Eq. 1–10) were connected by a single unidirectional synapse and stimulated at 60 Hz for 1 min 
with different time lags under a parameter set for a synaptic learning rule. Initial synaptic efficacy was 0.5, and the synaptic change in each time lag was 
calculated as mean synaptic efficacy after the stimulation protocol divided by the initial synaptic efficacy (synaptic efficacy before stimulation). A total of 
1,000 parameter sets whose sum of squared errors (SSE) between the analytical result and fitted Gaussian curves was less than 0.25 were selected. 
Each row of the upper panel represents the numerical values of synaptic changes (after/before) in different lag times, computed using parameters that 
were arranged in ascending order based on their SSE. The line and shadow in the lower panel indicate the mean and standard deviation, respectively. 
(F) Distributions of 1,000 parameter sets collected by parameter search for each learning rule in the axes of thresholds (  θp and θd) and amplitudes 
(γp and γd). (G) Schematic illustration for connections and firing patterns of neurons used in the calculation of synaptic efficacy during sleep-like or wake-
like firing patterns. Ten pre-synaptic neurons were connected to one post-synaptic neuron. All the neurons were represented by the equation (Eq. 1–10). 
The mean firing rates during sleep-like and wake-like firing patterns were adjusted to the same. (H) Box plots for mean synaptic efficacy in sleep-like 
and wake-like firing patterns by different synaptic learning rules and mean firing rates (n = 1,000 for each firing rate, n represents the number of synaptic 
learning rules). A total of 1,000 parameter sets for the specific learning rules collected by parameter search in panel (E) and connection patterns in panel 
(G) were applied. Initial synaptic efficacies in all the synapses were 0.5 and synaptic efficacies were simulated for 6 min. Synaptic efficacies for the last 
2 min were averaged and compared between sleep-like and wake-like firing patterns. The whiskers above and below show minimal to maximal values. 
The box extends from the 25th to the 75th percentile, and the middle line indicates the median. Bayesian statistical analysis was performed using 
Markov Chain Monte Carlo method to infer posterior distributions of average differences in mean synaptic efficacy between sleep-like firing patterns and 
wake-like firing patterns. Asterisks (*) indicate 95% credible intervals (CIs) do not include zero. The data underlying the graphs shown in the figure can 
be found in Table A in S1 Data. The 95% CIs for the distributions of average differences are shown in Table A in S3 Data.

https://doi.org/10.1371/journal.pbio.3003198.g001

https://doi.org/10.1371/journal.pbio.3003198.g001
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Fig 2. Robustness of WISE and SHY. Synaptic efficacies were calculated and compared between sleep-like and wake-like firing patterns in different 
conditions, assuming the same firing rates in both states. All the neurons were represented by the equation (Eq. 1–10). A total of 1,000 parameter sets 
for the specific learning rules collected by parameter search in Fig 1 were applied. Initial synaptic efficacies in all the synapses were 0.5, and synaptic 
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Process S [29]. In the present model, we assumed that calcium/calmodulin-dependent protein kinase II (CaMKII) is responsi-
ble for the homeostatic oscillation [30]. To evaluate the synaptic efficacy across a series of sleep–wake cycles, we assumed 
that CaMKII changes its states in a use-dependent manner during wakefulness and induces SWO by interacting with 
channels or receptors that regulate neuronal membrane potentials or enzymes that regulate neurotransmitters [10,30]. This 
assumption aligns with observations that CaMKII has multiple phosphorylation states and changes its function accordingly 
[31]. We integrated the use-dependent change of CaMKII’s function for activating channels such as NMDAR into the sleep–
wake dynamics model. The initial state of CaMKII, such as pT286/287 CaMKII, has self-activating ability and Ca2+-dependent 
activation [32]. This initial state activates the second state of CaMKII, such as pT305/306 CaMKII, or phosphatases, such as 
calcineurin, which can be regulated during sleep [33]. We assumed that the second state directly interacts with molecules 
that induce SWO from the result of optimizing correlation to Process S for network models (S11A Fig).

In the simulation of a representative model, we observed that pT286/287 CaMKII, represented as r in Fig 4A, gradu-
ally increased due to Ca2+ influx and autoactivation during wakefulness, which was followed by an increase in pT305/306 
CaMKII, represented as a in Fig 4A. The increased a then activated NMDAR and induced SWO (Fig 4C and 4D). The 
mean synaptic efficacy was higher during sleep-like periods than during wake-like periods under STDP (Fig 4E and 4G). 
The opposite results were observed under Anti-STDP (Fig 4F and 4H). The differences of synaptic efficacy between sleep 
and waking states were observed in the analysis with multiple parameter sets (S11B and S11C Fig). The results of model 
with other bifurcation mechanisms or systems also showed the same trends (S12–S14 Figs). These results confirmed that 
WISE under STDP and SHY under Anti-STDP are compatible with network models that have sleep–wake dynamics.

Synaptic changes depend on firing rates assuming higher firing rates during wake-like states

In the previous sections, we compared synaptic efficacies in sleep-like and wake-like states by assuming the same mean 
firing rates in both states. While this assumption is feasible in brain regions such as the visual cortex, where firing rates are 
almost constant between states [34], regions such as the somatosensory cortex showed higher firing rates during wakeful-
ness [35]. To evaluate the synaptic dynamics in the higher firing rates during wake-like states, we assumed that mean firing 
rates in Up states of sleep-like patterns are equal to those in wake-like patterns and found that WISE was observed at lower 
mean firing rates while SHY was observed at higher mean firing rates under Hebbian and STDP (Fig 5). Thus, synaptic effi-
cacies change to different directions depending on mean firing rates assuming higher firing rates during wake-like states.

efficacies were simulated for 6 min. Synaptic efficacies for the last 2 min were averaged. (A) Schematic illustration of network model consisting of 96 
pre-synaptic neurons connected to one post-synaptic neuron and box plots for mean synaptic efficacy during sleep-like and wake-like firing patterns. 
(B) Schematic illustration of network model consisting of 10 randomly connected neurons and box plots for mean synaptic efficacy during sleep-like and 
wake-like firing patterns. (C) The original (black dotted line) and modified (magenta solid line) curves for STDP rule and box plots for mean synaptic effi-
cacy. alr  is the amplitude, and τlr  is the time constant for Gaussian curves to be fitted by parameter search. (D) Representative raster plots of the original 
(black) and modified (magenta) sleep-like firing patterns and the differences in median of mean synaptic efficacies between sleep-like and wake-like 
firing patterns (sleep – wake). The adjusted mean firing rates of sleep-like firing patterns were generated by changing DOWNM under constant UPM and 
ISIM (n = 1,000 for each firing rate). The dotted boxes highlighted the values of UPM = 1.5 and ISIM = 2.7, which were the original values used in Fig 
1H. (E) Representative raster plots of the original (black) and modified (magenta) sleep-like firing patterns and the differences in median of mean synap-
tic efficacies between sleep-like and wake-like firing patterns (sleep – wake). The adjusted firing rates of sleep-like patterns were generated by changing 
ISIM under constant UPM and DOWNM (n = 1,000 for each firing rate, n represents the number of synaptic learning rules). The dotted boxes highlighted 
DOWNM = 3.0 and UPM = 2.7, which are the closest to the original values used in Fig 1H: DOWNM = 3.12 and UPM = 2.7. (A–C) The mean synaptic 
efficacy was evaluated in sleep-like and wake-like firing patterns with various mean firing rates assuming different synaptic learning rules (n = 1,000 for 
each firing rate, n represents the number of synaptic learning rules). The whiskers above and below of box plots show minimal and maximal values, 
respectively. The box extends from the 25th to the 75th percentile and the middle line indicates the median. Bayesian statistical analysis was performed 
using Markov Chain Monte Carlo method to infer posterior distributions of average differences in mean synaptic efficacy between sleep-like firing pat-
terns and wake-like firing patterns. Asterisks (*) indicate 95% CIs do not include zero. The data underlying the graphs shown in the figure can be found 
in Tables B–D in S1 Data. The 95% CIs for the distributions of average differences are shown in Tables B–D S3 Data. (D, E) ISIM: log

10
(mean ISI), UPM: 

log
10

(mean Up-state duration), DOWNM: log
10

(mean Down-state duration).

https://doi.org/10.1371/journal.pbio.3003198.g002

https://doi.org/10.1371/journal.pbio.3003198.g002
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Fig 3. WISE and SHY in Hodgkin–Huxley-based network models. (A) Schematic illustration of the model for a neuron with an excitatory and inhib-
itory synapse. AMPAR, NMDAR, GABAR, and VGCC were defined as synaptic receptors or channels. Ca2+-pump/exchangers were defined in cellular 
and synaptic compartments independently (represented by τCa and τCa–syn, respectively). A Hodgkin–Huxley-based network model was constructed 
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Discussion

In this study, we investigated how synaptic dynamics interact with firing patterns and learning rules. Under Hebbian and 
STDP, wake-like firing patterns inhibits the synaptic connections, hence weakening the synaptic efficacy, while sleep-like 
firing patterns excite synaptic connections, hence strengthen the synaptic efficacy. We referred to this tendency as WISE. 
In contrast, under Anti-Hebbian and Anti-STDP, wake-like and sleep-like patterns tend to strengthen and weaken synap-
tic efficacies, respectively, which aligns with SHY. When we set the firing rate of the Up state of sleep-like phasic firing 
patterns equal to the firing rate of wake-like tonic firing patterns, the resulting higher firing rate of wake-like firing pattern 
tends to strengthen synapses. This indicates that firing rate is the dominant factor in determining the direction of synap-
tic changes. These findings delineate the boundary conditions of synaptic dynamics during the sleep–wake cycle. We 
also demonstrated that these boundary conditions are stable under various conditions by using two types of models with 
numerous parameters derived from biological knowledge.

Boundary conditions in synaptic homeodynamics

From the perspective of homeostasis, SHY proposes that wakefulness strengthens synapses to learn about the environ-
ment, while NREM sleep weakens less important synapses to reduce energy consumption [2]. Although studies, including 
anatomical and electrophysiological research, support SHY [26,36,37], several studies have reported contradictory results 
[4,5,8,38].

Our study indicated that the direction of synaptic changes during sleep-like firing patterns depends on synaptic learning 
rules and firing rates of local networks. Assuming the same mean firing rates in sleep-like and wake-like patterns, SHY 
is observed under Anti-Hebbian and Anti-STDP (Figs 1H, 2A–2C, 3E, 3F, 4G and 4H). Additionally, we observed that 
higher mean firing rates results in smaller differences in synaptic changes between sleep-like and wake-like states (Figs 
1H, 2A–2C, and S9). This finding suggests that neurons with higher firing rates during wakefulness are less susceptible 
to synaptic depression during sleep, consistent with SHY [2]. In contrast, we observed WISE under Hebbian and STDP 
(Figs 1H, 2A–2C, 3E, 3F, 4G and 4H). This observation indicated that the maximum firing rates during sleep, particularly in 
the Up state of SWO, are higher when the mean firing rates are equal in both sleep and wakefulness. The high maximum 
firing rates in sleep enhance synaptic learning rules, that is, Hebbian and STDP strengthen synaptic weights while  Anti- 
Hebbian and Anti-STDP weaken synaptic weights. In vivo experiments also reported that the higher firing rates or shorter 
inter-spike interval (ISI) in the Up state of SWO [8,9,22] (S18 Fig). Higher maximum firing rates lead to greater Ca2+ influx 

based on the averaged neuron model in a previous study [23]. (B) Procedures for collecting parameter sets that bifurcate from wake-like to sleep-like 
firing patterns and comparing synaptic efficacy between the two states in Hodgkin–Huxley-based network models. Network models consisted of 80 
neurons with E:I ratio of 4:1. Each neuron had two excitatory and two inhibitory synapses. Connections between inhibitory neurons were not consid-
ered. (C) Representative sleep-like and wake-like firing patterns for three types of bifurcation models. In the pre-synaptic models, firing patterns are 
bifurcated by the values representing pre-synaptic activation (see “Materials and methods, Parameter search for SWO and bifurcation analysis in 
Hodgkin–Huxley-based network models”). The parameters used in the simulation were obtained by multiplying the original values defined in S5 Table by 
the presented factors. Simulations were conducted for five seconds and firing patterns during three seconds are presented in each model. (D) Changes 
in the sleep score, percentage of sleep-like waveforms (sleep (%)), and mean firing rate (FR (Hz)) as the conductance of the channel or receptor, or the 
coefficients of pre-synaptic activations are gradually increased. The range of the conductance was divided into 80 steps for post-synaptic or intracellular 
bifurcation, while the range of the coefficient was divided into 75 steps for pre-synaptic bifurcation. Simulations were conducted for 10 s at each conduc-
tance or coefficient step. (E, F) Box plots for mean synaptic efficacy during sleep-like and wake-like firing patterns under STDP (E) and Anti-STDP (F) by 
three types of network models (n = 191, 52, and 150 for STDP and n = 121, 36, and 119 for Anti-STDP in post-synaptic, intracellular, and pre-synaptic 
bifurcation models, respectively. n represents the number of parameter sets for the network models). A parameter set for the synaptic learning rule was 
assigned to excitatory synapses in each network model. Synaptic efficacy was compared, assuming the firing rates between sleep-like and wake-like 
states were almost close. Initial synaptic efficacies of all synapses were 0.5. Simulations were conducted for 60 s, and synaptic efficacy and CV were 
averaged over a period of 10 to 60 s. The whiskers above and below of box plots show minimal and maximal values, respectively. The box extends from 
the 25th to the 75th percentile, and the middle line indicates the median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student t test was applied. 
The data underlying the graphs shown in the figure can be found in Table E in S1 Data.

https://doi.org/10.1371/journal.pbio.3003198.g003

https://doi.org/10.1371/journal.pbio.3003198.g003
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Fig 4. WISE under Hebbian and STDP, and SHY under Anti-Hebbian and Anti-STDP is compatible with models including sleep–wake dynam-
ics. Synaptic efficacies were calculated in Hodgkin–Huxley-based network models bifurcated by the post-synaptic mechanism with sleep–wake 
dynamics under synaptic learning rules. The conductance of NMDAR was updated by a and the simulations were optimized by Pearson’s correlation 
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and larger changes in synaptic weights during SWO. Additionally, synchronization and hyperpolarized Down states that 
promote Ca2+ influx in the subsequent Up state [39] likely contribute to elevated post-synaptic Ca2+ during SWO.

We propose that synaptic changes depend on the differences in firing rates between NREM sleep and wakefulness. 
SHY may occur under STDP when mean firing rates during wakefulness are higher than during NREM sleep (Fig 5). A 
simulation showed that synaptic efficacies of neurons which are stimulated during wake-like states change according to 
SHY (see “Materials and methods, Calculation of synaptic efficacy under synaptic learning rules in Hodgkin–Huxley-based 
network models including stimulation during the wakefulness”, and S15 Fig). Similarly, previous studies have demon-
strated that exposure to novel stimuli or enforced wakefulness, conditions expected to increase sleep pressure, result in 
synaptic downscaling during sleep [40,41]. Conversely, quiet conditions, anticipated to yield lower sleep pressure during 
wakefulness, have strengthened synapses during sleep [40]. These observations align with our proposal because expo-
sure to novel environments or higher activity increases firing rates during wakefulness, leading to SHY. In contrast, the 
quiet wake causes only limited differences in firing rate between NREM sleep and wakefulness, leading to WISE (Fig 5). 
Given that different brain regions become active at different levels during wakefulness or sleep deprivation, our results 
indicate that even opposite synaptic changes may occur across different brain regions. These different responses to 
the neuronal activities during wakefulness support the idea that NREM sleep normalizes the neuronal activities that are 
skewed during the wakefulness, as presented by Watson and colleagues [8].

Noteworthy, WISE predicts lower post-synaptic Ca2+ concentration during wake-like desynchronized firing under Heb-
bian and STDP. This prediction aligns with the observation that calcineurin, an LTD-related molecule likely to be activated 
by lower Ca2+ concentration during wakefulness, plays a role in excitatory post-neuronal synapses for generating SWO in 
the following NREM sleep [42–44]. Another prediction of WISE is synaptic connectivity homeostasis. When synaptic trans-
mission is inhibited, the resulting SWO may strengthen synapses through WISE, compensating for the inhibited transmis-
sion. The connectivity homeostasis is also anticipated in the synaptic dynamics during hibernation. Decreases in firing 
rates and synaptic connections due to low temperatures during hibernation are associated with increases in SWO during 
NREM sleep and restoration of synaptic connections after hibernation [45,46], that is contrary to SHY. Since the lower the 
firing rates, the greater the synaptic potentiation during sleep in our results (Figs 1H and S9), WISE may explain synaptic 
dynamics during the hibernation. Likewise, in depressive disorder, which is characterized by reduced waking activity and 
dysfunction of AMPAR in frontal cortex [47], synaptic increase during NREM sleep may occur.

In conclusion, our study provides a unified framework for the synaptic dynamics during the sleep–wake cycle (Fig 6). 
It suggests that SHY, WISE, and the normalization during NREM sleep coexist but occur depending on synaptic learn-
ing rules and neuronal activities of networks. Although further studies are needed to investigate relationships between 

coefficients between Process S and r. Initial synaptic efficacies of all synapses were 0.5. The simulations were started from a wake-like state and 
conducted for 500 s. The parameter set for channel or receptor conductances, learning rule and sleep–wake dynamics and initial values for variables in 
a representative model are shown in S5–S8 Tables. (A) Schematic illustration of the model for sleep–wake dynamics in excitatory synapses. The initial 
state of CaMKII, such as pT286/287 CaMKII is represented by r. The initial state r activates a, which corresponds to the second state of CaMKII, such 
as pT305/306 CaMKII, or phosphatases such as calcineurin. α and β are coefficients for Ca2+ activation for r and Ca2+ inhibition for a, respectively. w is a 
coefficient for auto-activation of r. b is a coefficient for the inhibitory interaction of a against r. (B) Schematic illustration of the network model used in the 
simulations with sleep–wake dynamics. The network model has 80 neurons with the E:I ratio of 4:1. Each neuron has two excitatory and two inhibitory 
synapses. Connections between inhibitory neurons were not considered. (C, D) Time changes of post-synaptic membrane potential and Ca2+ concen-
tration, synaptic efficacy, and the ratio of two phosphorylated states of kinases (r and a) of a synapse in representative network models under STDP (C) 
and Anti-STDP (D). The results of 0–300 s are shown. (E, F) Raster plots and time changes of mean synaptic efficacy, sleep score, and Process S in 
representative network models under STDP (E) and Anti-STDP (F). The shadow in time changes in mean synaptic efficacy represents SD. The network 
was considered to be in the state of sleep or wake if the sleep score was above or below the threshold, respectively (the threshold is the value of sleep 
score where p = 0.01; see “Materials and methods, Evaluation of synchronization and desynchronization in Hodgkin–Huxley-based network models”). 
The results of 0–300 s are shown. (G, H) Mean and coefficient of variance (CV) of synaptic efficacy during the periods of sleep-like and wake-like states 
in representative network models under STDP (E) and Anti-STDP (F). The data underlying the graphs shown in the figure can be found in Table F in S1 
Data.

https://doi.org/10.1371/journal.pbio.3003198.g004

https://doi.org/10.1371/journal.pbio.3003198.g004
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synaptic learning rules, neuronal activities, and synaptic weights, the framework we presented here lays a foundation for 
future research.

Synaptic dynamics and brain functions

Our study provides several implications regarding the relationship between synaptic dynamics and brain functions during 
the sleep–wake cycle. WISE supports the notion that synaptic potentiation in NREM sleep contribute to memory consol-
idation [4,38], which can be promoted by STDP [48,49]. On the other hand, we revealed that wake-like desynchronized 
states can lead to synaptic depression under Hebbian and STDP, especially at lower firing rates (Figs 1H, 2A–2C, 3E, 

Fig 5. Synaptic changes depend on firing rates assuming higher firing rates during wakefulness. A Schematic illustration for sleep-like and 
wake-like spike patterns and box plots for mean synaptic efficacy in sleep-like and wake-like firing patterns for different learning rules and mean firing 
rates (n = 1,000 for each firing rate, n represents the number of synaptic learning rules). The mean firing rates in wake-like states are equal to the mean 
firing rates in Up states of sleep-like states. The sleep-like firing patterns were generated by sampling from the lognormal distributions with log

10
(mean 

Up-state duration) = 2.7 and log
10

(mean Down-state duration) = 3.0. SD was calculated according to the linear regression analysis based on in vivo data 
(see “Materials and methods”, S18 Fig). All the neurons were represented by the equation (Eq. 1–10). A total of 1,000 parameter sets for the specific 
learning rules collected by parameter search in Fig 1 were applied. Initial synaptic efficacies in all the synapses were 0.5, and synaptic efficacies were 
simulated for 6 min. Synaptic efficacies for the last 2 min were averaged. Mean firing rates of the wake-like states are shown in the x-axis. WISE and 
SHY dynamics are highlighted under the x-axis according to the change in the direction of synaptic efficacy. The whiskers above and below show mini-
mal to maximal values. The box extends from the 25th to the 75th percentile and the middle line indicates the median. Bayesian statistical analysis was 
performed using Markov Chain Monte Carlo method to infer posterior distributions of average differences in mean synaptic efficacy between sleep-like 
firing patterns and wake-like firing patterns. Asterisks (*) indicate 95% CIs do not include zero. The data underlying the graphs shown in the figure can 
be found in Table G in S1 Data. The 95% CIs for the distributions of average differences are shown in Table F in S3 Data.

https://doi.org/10.1371/journal.pbio.3003198.g005

https://doi.org/10.1371/journal.pbio.3003198.g005
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Fig 6. A unified framework for synaptic dynamics during the sleep–wake cycle. A Graphical abstract of a unified framework for synaptic dynamics 
during the sleep–wake cycle. SHY: synaptic homeostasis hypothesis, WISE: wake inhibition sleep excitation.

https://doi.org/10.1371/journal.pbio.3003198.g006

3F, 4G and 4H). One implication of this inhibition during desynchronized states is the enhancement of the signal to noise 
ratio (SNR) [50,51]. Stimulated neurons likely fire at higher rates, and their synaptic efficacies become larger than those of 
other neurons in the background desynchronized states. Additionally, neurotransmitter release during wakefulness possi-
bly modulates learning rules to control SNR [52]. Indeed, it has been reported that cholinergic projections from the nucleus 
basalis to the cortex are responsible for synaptic inhibition [51].

We also found that the variability of synaptic efficacy is higher during wakefulness than in NREM sleep under Hebbian 
and STDP (Figs 4G, S12–S14 and S16). Several studies suggest that the variability of synaptic efficacies leads to the 
variability of network activity and reflects probabilistic inference for external worlds and decision-making [53–55]. In this 
context, our results suggest that awake states, with higher variability of synapses, are advantageous for exploration and 
behavioral selection. Additionally, the decline in synaptic variability during NREM sleep under Hebbian and STDP supports 
the idea of normalization of firing rates, whose distribution is skewed during wakefulness [8].

Model characteristics and limitations

Some computational studies have investigated synaptic changes in neural networks under STDP protocols using 
Ca2⁺ -based plasticity models [21,56] while other studies have also examined how SWO affect synaptic plasticity under 
STDP conditions [49]. However, these previous studies were limited to a single synaptic learning rule or firing pattern. Our 
study is the first to comprehensively investigate synaptic dynamics during sleep–wake cycle by integrating Ca2+-based 
plasticity model to represent various types of synaptic learning rules and various simulated sleep–wake firing patterns. 
By selecting model parameters that align with experimentally observed firing patterns and synaptic learning rules, our 

https://doi.org/10.1371/journal.pbio.3003198.g006
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model can predict synaptic dynamics under specific conditions regardless of species, brain region, or sex. In the sim-
ple model (where firing patterns are given and do not change under simulation) used in Figs 1H, 2, and 5, sleep-like or 
wake-like firing patterns were generated based on the distributions of ISI, Up-state duration, and Down-state duration 
estimated from experimentally observed rat firing patterns [8,22]. Synaptic efficacy became higher at higher mean firing 
rates in both states when adjusting mean firing rates by changing ISI (Fig 5) while synaptic efficacy during sleep-like 
firing patterns seems to be independent when adjusting mean firing rates by changing Down-state durations as shown 
in Fig 1H. Regardless of ways to generate spike patterns during sleep-like states, synaptic efficacy during sleep tends to 
become higher than during wakefulness, assuming the same mean firing rates between both states (Fig 2D and 2E). The 
results for other species can be obtained by simulating firing patterns using the same method (detailed in “Materials and 
 methods, Generation of sleep and wake-like firing patterns”) when these distributions are known. The ranges of Up- and 
Down-state durations during SWO in mice, rats, and cats are approximately 100–500 ms [9,57], while in humans, Up-state 
durations range from 250–1,000 ms [58], all of which fall within the ranges examined in Figs 2D and 2E. Similarly, wake-
state ISI across various species typically range from 2 to 100 ms [9,59], mostly within the scope covered in Fig 2E. There-
fore, we suppose our finding in the present study captured universal aspects of synaptic dynamic in the sleep and wake 
cycles regardless of species, brain region, or sex.

Synaptic homeostasis is a type of more long-term plasticity that returns a neuron back to its homeostatic set point 
[60]. In our models, we did not explicitly include synaptic homeostasis in the preposition but consider synaptic homeo-
stasis in the definitions of SHY and WISE. For example, we assume that SHY upscales synaptic strength during wake-
fulness and downscales during sleep to achieve synaptic homeostasis while WISE upscales synaptic strength during 
sleep and downscales during wakefulness to achieve synaptic homeostasis. Importantly, since both SHY and WISE can 
achieve synaptic homeostasis, adding the further mechanism of synaptic homeostasis in the preposition would not alter 
our predictions.

The present study has some limitations. Our models are composed of uniform neuronal populations and synaptic learn-
ing rules, which can be regulated by sleep promoting kinases. However, different types of neurons are interconnected in 
the cortex, and their firing rates and synaptic learning rules vary by region and condition [11,52,61,62]. Further studies on 
synaptic plasticity across a wide variety of neurons, regions, and conditions will provide a more detailed understanding 
of the relationship between synaptic learning rules and synaptic plasticity. In this study, we assumed that the activation of 
sleep-promoting kinases and the accumulation of phosphorylation during wakefulness induce SWO. We presented three 
bifurcation models for the generation of SWO based on the changes in firing patterns (Figs 3 and 4). Since the molecu-
lar mechanism of SWO is still under vigorous investigations, these bifurcation models will need to be updated by future 
experiments. Additionally, the model for the sleep–wake dynamics has some ambiguities (Fig 4). The coefficient “b” in the 
equation (Eq. 14, “Materials and methods”) can represent not only the second phosphorylated states of CaMKII such as 
pCaMKII (T305/T306), but also phosphatases such as calcineurin [42]. The homeostatic oscillation caused by CaMKII 
described in Fig 4 is one of the examples. We consider that our model is not limited to CaMKII, and salt-inducible kinase 
3 (SIK3) and extracellular signal-regulated kinase (ERK) are alternative candidates because these kinases also have 
multiple phosphorylation states and are related to circadian rhythm [63–68]. Moreover, it is unclear which phosphorylation 
state of CaMKII highly correlates with Process S or interacts with the molecules that induce SWO. Our model incorporated 
two principal phosphorylation states of CaMKII—designated as “first state” and “second state”—both potentially interact-
ing with molecules to generate SWO and exhibiting positive correlations with Process S. In S11A Fig, we systematically 
conducted simulations with varying parameters across potential combinations. We selected one where a specific phos-
phorylation state exhibited maximal Pearson’s correlation coefficients with Process S. The results suggest that the first 
state (expecting CaMKII pT286/T287) demonstrates a stronger correlation with Process S, while the second state appears 
more intimately involved in generation of the SWO. These computational predictions require experimental validation in 
subsequent studies.
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The present computational study also does not explicitly incorporate the effects of firing patterns on neuropeptide or 
hormone releases. Previous studies demonstrated that burst firing promotes the release of neuropeptides such as Sub-
stance P and Neuropeptide Y, which significantly contribute to modulation of neural circuits [69,70]. Although systematic 
investigations of the relationship between firing patterns and neurotransmitter release in cortical neurons remain limited, 
several studies have documented the release of neuropeptides, including Neuropeptide Y, somatostatin (SST), and vaso-
active intestinal peptide (VIP) alter the thresholds in STDP in cortex [71]. In contrast with those of classical neurotrans-
mitters, these neuropeptides predominantly exert their effects through G-protein coupled receptors, functioning over 
extended temporal domains, potentially introducing additional complexity to plasticity mechanisms [72]. Elucidating the 
contributions of neuropeptides and hormones influenced by sleep–wake firing patterns to synaptic plasticity and homeo-
static control of neural excitability in cortical neurons represents an important direction for subsequent studies.

Materials and methods

Modeling synaptic learning rules

Synaptic efficacy variable ρ is described by a first order differential equation according to the previous article [21].

 
τ s
dρ
dt

= –ρ(1 – ρ) (ρ∗ – ρ) + γp(1 – ρ)Θ [c – θp] – γdρΘ [c – θd] + Noise
 (1)

(Θ denotes the Heaviside function: Θ[c −θ] = 0 for c < θ and Θ[c −θ] = 1 for c ≥ θ).
c is the post-synaptic Ca2+ concentration and expressed as the sum of Ca2+ influx from NMDAR (Cpre) and VGCC (Cpost).

 c = Cpre + Cpost (2)

Cpre follows a second-order differential equation of NMDAR activation by firing of pre-synaptic neurons. We modified the 
NMDAR kinetics (using smaller time constant of sNMDA and xNMDA than that in the original model) and did not consider Mg2+ 
block against NMDAR for the purpose of obtaining parameter sets for the four different types of synaptic learning rules.

 

dCpre

dt
= –αCaICa_NMDAβNMDA –

Cpre

τpre  (3)

 ICa_NMDA = gNMDAsNMDA(Vrest – VCa) (4)

 

dsNMDA
dt

= asNMDAxNMDA (1 – sNMDA) –
sNMDA
τsNMDA  (5)

 

dxNMDA
dt

= axNMDAf (Vpre) –
xNMDA
τxNMDA  (6)

 f(V) = 1/[1 + exp(–(V – 20)/2)] (7)

C
post

 is described by a first order differential equation of VGCC

 

dCpost

dt
= –αCaAICa_VGCCβVGCC –

Cpost

τpost  (8)

 ICa_VGCC = gCam
2
Ca∞ (Vpost) (Vpost – VCa) (9)

 mCa∞(V) = 1/[1 + exp(–(V+ 20)/9) (10)
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Equations (Eq. 3–10) were based on the previous study [23,73,74]. ICa_VGCC and ICa_NMDA are Ca2 + current through 
NMDAR and VGCC, respectively. xNMDAand sNMDAare gating variables for second-order kinetics. f is a saturating function 
of membrane potential V (Vpre and Vpost are membrane potentials in pre-synaptic and post-synaptic neurons, respectively) 
and mCa∞(V) is a steady-state activation gating variable which is dependent on V.

Fixed parameters are shown in S1 Table. Scaling parameters βNMDA and  βVGCC in equations (Eq. 3 and 8) were esti-
mated so that the mean amplitude of Cpre = 0.7 µMand the mean amplitude of Cpost = 1.4 µM  according to the results of 
the previous studies [75]. The equation for noise and the comparison of simulation and analytical results are in “Materials 
and methods, Comparison of simulation and analytical results for synaptic learning rules” and S17 Fig.

Parameter search for synaptic learning rules

We selected parameter values from uniform distributions within the ranges of values [21] (S2 Table). Parameter sets for Heb-
bian and STDP were collected in the conditions where θp > θd because most of them did not appear in θp < θd. In the same 
way, parameter sets for Anti-Hebbian and Anti-STDP were collected in θp < θd. The synaptic changes in different time lags 
were calculated analytically according to the way presented by previous reports [21]. Neurons were stimulated at 1 Hz for 
60 s. First, scaling parameters βNMDA and  βVGCC in the equations (Eq. 3 and 8) were calculated so that the mean amplitudes 
of Cpre and Cpost (MCpre and MCpost) during 2–3 s satisfy MCpre = 0.7 µMand MCpost = 1.4 µM  because this kind of relationship 
holds in the experimental studies [75]. We considered that synaptic weights did not change if spike-pairs had large time 
differences. Specifically, the ratio of γp and γd  was calculated and the value of γd  was updated so that the potentiation and 
depression rate become equal when the lag time was equal to 100 ms. The potentiation and depression rate were expressed 
as γpαp and γdαd, respectively (αx = 1

T

∫ T
0
Θ[c(t) – θx]dt, T is the duration of the stimulation protocol) [21]. Then, the scal-

ing parameters were calculated again in the parameter sets where γdwas updated and synaptic changes were analytically 
calculated in each lag time (from −160 ms to 160 ms with 10 ms intervals). To speed up the calculations, potentiation and 
depression rate were calculated during the 2–3 s and multiplied by 60. Gaussian curves that represent four different types of 
synaptic learning rules were described by the following equations with amplitude (alr, blr,

∣∣alr
∣∣ = ∣∣blr

∣∣) and time constant (τlr).

 
alr exp

(
–
(
x
τlr

)2
)

(x ≥ 0)

 

 
blr exp

(
–
(
x
τlr

)2
)

(x < 0)

 

For each parameter set, the sum of squared errors (SSE) between analytical solutions and fitting gaussian curves 
were calculated and the parameter set was collected if the SSE was less than the threshold (The threshold was 0.45 in 
alr  = 0.9, τlr  = 50 or 0.25 in other conditions of Figs 1E and S1A–S1E. The threshold was 0.6 when searching for synaptic 
learning rules in Hodgkin–Huxley-based network models).

Noise term and comparison of simulation and analytical results

The noise term in the equation (Eq. 1) was expressed by the following equation.

 
Noise (t) = σ

√
π [Θ (c(t) – θd) + Θ (c(t) – θp)] z

dt
η(t)

 

When solving the differential equations, the noise term was calculated by above equation and added to the differen-
tial equation. z is the coefficient of noise, dt is a step size, and η(t) is a Gaussian white noise process with unit variance 
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density. We simulated the synaptic efficacy by the equation (Eq. 1) for 1,000 times and calculated the synaptic changes 
in different lag times according to the previous article [21]. An analytical solution was compared to simulation results in 
different values of z in the simple model (S17 Fig) and z = 3.5 was used in the simulations with synaptic learning rules in 
this study.

Generation of sleep and wake-like spike patterns

We assumed that synchronization of firing was observed in NREM sleep states and desynchronization of firing was 
observed during wakefulness. Timestamps of wake-like spikes were obtained from ISI per spike, and those of sleep-like 
spikes were obtained from ISI per spike and duration of Up and Down states per burst. ISI per spike and durations of Up 
and Down states per burst were sampled from lognormal distributions with specific means and SDs. Spike patterns with a 
certain mean firing rate in Figs 1H, 2A–2D, S3, S16A, and S19 were generated by adjusting the mean Down-state dura-
tion. Spike patterns in Figs 2E, 5, and S2 were generated by adjusting the mean ISI. The relationships between mean and 
SD for the lognormal distributions were obtained based on previous in vivo recordings [8,22] (S18C–S18G Fig).

Definition of lognormal distributions based on in vivo recordings

The duration of Up states and Down states were sampled from the lognormal distributions because previous studies 
found that duration of Up states and Down states have lognormal distributions [8,76]. We assumed that ISI also has log-
normal distributions on the same datasets [8,22] (S18A and S18B Fig). The spike data recorded from excitatory neurons 
(verified by cross-correlogram) of rats which had natural sleep–wake cycle from the previous studies [8,22] were used in 
this study. To reduce the variables, liner regression analysis was performed on the ordinary logarithm of mean and SD 
of the duration of Up and Down states (S18C and S18D Fig) and ISI (S18E and S18F Fig), and the ordinary logarithm of 
the mean Up-state duration and mean Down-state durations (S18G Fig). Then, the SD of Up-state duration, Down-state 
duration, ISI in the Up states of sleep-like firing patterns and ISI in wake-like firing patterns were calculated by the equa-
tions: 0.35 × log

10
(mean Up-state duration) − 0.7, 0.25 × log

10
(mean Down-state duration) − 0.35, −0.2 × log

10
(mean ISI in 

the Up states of sleep) + 0.95, and 0.03 × log
10

(mean ISI in the state of wake) + 0.65, respectively. The mean Down-state 
duration was calculated by the equation −0.7 × log

10
(mean Up-state duration) + 4.0.

Conversion from spike patterns to voltage waveforms

The timestamp data for spikes during sleep-like and wake-like firing patterns were converted to voltage waveforms. We 
defined several parameters when constructing voltage waveforms so that the timestamps of the spikes corresponded to the 
peaks of the membrane potential by referring to the experimental studies [9,57] (S3 Table). Voltage waveforms were gen-
erated by linear interpolation of the points for the membrane potential of peaks, after hyperpolarization and Up states. The 
difference of membrane potentials between Up states and Down states was 15 mV when calculating synaptic efficacy in Figs 
1H, 2A–2E, 5, S2, S3 and S16. The results in other values for the difference of membrane potentials are shown in S19 Fig.

Comparison of synaptic efficacy during sleep-like and wake-like firing patterns in simple model

The generated sleep-like or wake-like spike trains were converted to the data for membrane potential (see “Materials and 
methods, Conversion from spike patterns to voltage waveforms”). Time changes in synaptic efficacy were calculated by 
assigning the time-series data for sleep-like and wake-like membrane potentials and parameter sets for synaptic learning 
rules to the equations (Eq. 1–10). Time changes in synaptic efficacy were calculated for 6, 18, and 36 min with mean firing 
rates of pre-synaptic neurons being 0.1–10.0 Hz, 0.03 Hz and 0.01 Hz, respectively. Mean and CV of synaptic efficacy for 
the last two minutes were calculated by every time step and compared between sleep-like and wake-like firing patterns 
as an average over time. In random connections of Fig 2B, each neuron was randomly connected to other neurons with a 
probability of 12% and the synaptic efficacy was calculated based on their spike trains.
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Hodgkin–Huxley-based network model

A Hodgkin–Huxley-based network model was constructed based on the averaged neuron model in a previous study with 
some modifications as follows [23,73,74]:

 

CA
dV
dt

= –A (IL (Vpost) + INa (Vpost, hna) + IK (Vpost, nk) + IA (Vpost, hA) + IKS (Vpost, mKS)

+ ICa (Vpost) + IKCa
(
Vpost,

[
Ca2+

])
+ INaP (Vpost) + IAR (Vpost)

)

– INMDA (Vpost, sNMDA, xNMDA) – IAMPA (Vpost, sAMPA) – IGABA (Vpost, sGABA)  

where C is the membrane capacitance, A is the area of a single neuron, and V is the membrane potential. The intrinsic 
(non-synaptic) ion channels in the cell body were modeled using Hodgkin–Huxley-based equations, with a gating variable 
x governed by the first-order kinetics equation:

 
dx
dt

= φ [αx (Vpost) (1 – x) – βx (Vpost) x] = φ [ x∞(V) – x] /τx(V)
 

where φ is the temperature factor (φ = 1).
Intrinsic currents are given by the following equations:

 IL (Vpost) = gL (Vpost – VL) 

 INa (Vpost, hna) = gNam3
Na∞ (Vpost) hNa (Vpost – VNa) 

 mNa∞ (Vpost) = αm(Vpost)/(αm (Vpost) + βm (Vpost)) 

 αm (Vpost) = 0.1(Vpost + 33)/[1 – exp (– (Vpost + 33) /10)] 

 βm (Vpost) = 4exp(– (Vpost + 53.7) /12) 

 
dhna
dt

= 4(αh (Vpost) (1 – hNa) – βh (Vpost) hNa) 

 αh (Vpost) = 0.07exp(–Vpost + 50)/10) 

 βh (Vpost) = 1/[1 + exp(–(Vpost + 20)/10)] 

 IK (Vpost, nk) = gKn4K(Vpost – VK) 

 
dnk
dt

= 4(αn (Vpost) (1 – nk) – βn (Vpost) nk) 
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 αn (Vpost) = 0.01(Vpost + 34)/[1 – exp (– (Vpost + 34) /10)] 

 βn (Vpost) = 0.125exp(– (Vpost + 44) /25) 

 IA (Vpost, hA) = gAm3
A∞(Vpost)hA(Vpost – VK) 

 mA∞ (Vpost) = 1/[1 + exp(–(Vpost + 50)/2)] 

 
dhA
dt

= (hA∞ (Vpost) – hA)/τhA 

 hA∞ (Vpost) = 1/[1 + exp((Vpost + 80)/6)] 

 IKS (Vpost, mKS) = gKSmKS(Vpost – VK) 

 
dmKS

dt
= (mKS∞ (Vpost) –mKS)/τmKS (Vpost) 

 mKS∞ (Vpost) = 1/[1 + exp(–(Vpost + 34)/6.5)] 

 τmKS (Vpost) = 8/[exp(–(Vpost + 55)/30) + exp((Vpost + 55)/30)] 

 ICa (Vpost) = gCam
2
Ca∞(V)(Vpost – VCa) 

 mCa∞ (Vpost) = 1/[1 + exp(–(Vpost + 20)/9)] 

 
IKCa

(
Vpost,

[
Ca2+

])
= gKCamKCa∞(

[
Ca2+

]
)(Vpost – VK) 

 
mKCa∞

([
Ca2+

])
= 1/[1 + (KD/[Ca

2+])
3.5

]
 

 INaP (Vpost) = gNaPm3
NaP∞(Vpost)(Vpost – VNa) 

 mNaP∞ (Vpost) = 1/[1 + exp(–(Vpost + 55.7)/7.7)] 

 IAR (Vpost) = gARhAR∞(Vpost)(Vpost – VK) 

 hAR∞ (Vpost) = 1/[1 + exp((Vpost + 75)/4)] 

where nk, hNa, hA, and mKS are gating variables and mNa∞, mA∞, hA∞, mKS∞, mCa∞, mKCa∞, mNaP∞, and hAR∞ are 
steady-state activation gating variables, and αm, βm, αh, βh, αnand βn are rate constants.
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The extrinsic (synaptic) ion currents in the dendrite were also modeled using Hodgkin–Huxley-based equations, with a 
gating variable s governed by the first-order kinetics equation for AMPA and GABA receptors:

 

ds
dt

= asf(V) –
s
τs 

and with gating variables s and x governed by the second-order kinetics equations for NMDA receptors:

 

ds
dt

= asx(1 – s) –
s
τs 

 

dx
dt

= axf(V) –
x
τx 

where τ is the time constant for turnover of s and x, and f is a saturating function of V:

 f (Vpost) = 1/[1 + exp(–(Vpost – 20)/2)] 

Extrinsic currents are then given by the following equations:

 IAMPA (Vpost, sAMPA) = gAMPAsAMPA(Vpost – VAMPA) 

 

dsAMPA
dt

= aAMPAf (Vpre) –
sAMPA
τAMPA  

 INMDA (Vpost, sNMDA, xNMDA) = gNMDAsNMDA(Vpost – VNMDA) 

 

dsNMDA
dt

= asNMDAxNMDA (1 – sNMDA) –
sNMDA
τsNMDA  

 

dxNMDA
dt

= axNMDAf (Vpre) –
xNMDA
τxNMDA  

 IGABA (Vpost, sGABA) = gGABAsGABA(Vpost – VGABA) 

 

dsGABA
dt

= aGABAf (Vpre) –
sGABA
τGABA  

The Ca2+ concentration in cell body and synapses were described by the following equations:

 

d[Ca2+]
dt

= –αCa (AICa (Vpost)) –

[
Ca2+

]

τCa  

 

d[Ca2+syn]

dt
= –αCa (AICa (Vpost)βVGCC + INMDA (Vpost, sNMDA, xNMDA)βNMDA) –

[
Ca2+syn

]

τCa–syn  

The constant values are listed in S4 Table. Intrinsic (non-synaptic) ion currents (e.g., INa) should be multiplied by 10 to adjust 
its unit to nanoampere (nA) when the numerical values listed in S5 Table are directly used in the numerical simulations.
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The network model has two Ca2+ compartments of cell body and synapse following the facts that the time constant of Ca2+ 
in synapses is very short (about 15 ms) [75] while a larger Ca2+ time constant (about 50–1,000 ms) is necessary to induce 
SWO [23]. We did not consider the influx of Ca2+ from spines to a cell body taking into account the immediate uptake of Ca2+ 
by intracellular buffers [77]. The number of excitatory and inhibitory synapses per neuron were sampled from lognormal 
distributions, respectively. Connections between inhibitory neurons were not considered because we did not include this type 
of connection in parameter search and bifurcation analysis in a single neuron. The mean = 2 and SD = 0.01 was adopted 
for lognormal distributions of the number of excitatory and inhibitory synapses per neuron in Figs 3 and 4, in which excit-
atory neurons had both two excitatory and inhibitory synapses and inhibitory neurons had only two excitatory synapses. The 
conductance of AMPAR and NMDAR or the conductance of GABAR were divided by the average number of excitatory or 
inhibitory synapses per neuron respectively in the simulations of Hodgkin–Huxley-based network models.

Parameter search for SWO and bifurcation analysis in Hodgkin–Huxley-based network models

Parameter search for SWO and bifurcation analysis for a single neuron were based on the previous article [23]. First, 
we randomly generated parameter sets from a large parameter space and searched for parameter sets that yield firing 
patterns of SWO. The ranges of parameters were defined to include biophysically reasonable values. The conductance 
of intrinsic (non-synaptic) channels in the soma and axon (gL, gNa, gK, gA, gKS, gCa, gKCa, gNaP, gAR) and extrinsic (synaptic) 
channels in the dendrite (gAMPA, gNMDA, gGABA) were generated by selecting parameters from an exponential distribution 
bounded to the interval 10–2–102 mS/cm2 and 10–3–101 μS, respectively. A random parameter search for time constant of 
intracellular Ca2+ (τ

Ca
) were also conducted in the interval 101–103 ms. The parameter sets that yielded a steady-state and 

periodic solution with real values were evaluated. The major frequency of the oscillatory behavior was analyzed by fast 
Fourier transform. Additionally, we assessed the detailed structure of the oscillations by counting the number of spikes; 
the number of spikes was determined as half the number of times the membrane potential crossed −20 mV. Solutions in 
which the maximum of membrane potential were more than 200 mV or the minimum of membrane potential were less 
than −200 mV were eliminated at this point. Based on these characteristics, the solutions were classified into six catego-
ries: “Resting” (spike numbers per second < 0.6, peak frequency ≤ 0.5 Hz, maximum membrane potential < −30 mV or 
minimum membrane potential > −30 mV), “SWO” (peak frequency ≥ 0.5 Hz and 2 × peak frequency ≤ spike number per 
second < 30), “SWO with high frequency” (peak frequency ≥ 0.5 Hz, spike number per second ≥ 2 × peak frequency and 
spike number per second ≥ 30), “AWAKE” (peak frequency ≥ 0.5 Hz, spike number per second ≤ 2 × peak frequency and 
spike number per second < 30), “AWAKE with high frequency” (peak frequency ≥ 0.5 Hz, 30 < spike number per sec-
ond ≤ 2 × peak frequency and spike number per second < 100) and “EXCLUDED” (others not classified above).

Second, we conducted bifurcation analysis in parameter sets that yield SWO or SWO with high frequency. In the bifurca-
tion analysis, channel or receptor conductance was gradually changed from 10−2 to 102 times its original value by 100 steps 
(for the bifurcation by the pre-synaptic mechanism, aAMPA,

 axNMDA, aGABA were gradually changed from 10−2 to 101 times 
its original value by 100 steps), and the solutions were automatically classified into six categories according to the criteria 
described above. We selected parameter sets that including the bifurcation from “AWAKE” to “SWO” and satisfying minimum 
membrane potential of “SWO” + 5 mV < minimum membrane potential of “AWAKE” in continuously varying conductance. In 
the parameter search and bifurcation analysis for a single neuron, the simulations were conducted for 6 s, and the results 
of 1–6 s were analyzed. Integration was performed with the following initial values in each simulation of parameter search 
and bifurcation analysis for a single neuron: V = −45 mV, hNa = 0.045 (unitless), nK = 0.54 (unitless), hA = 0.045 (unitless), 
mKS = 0.34 (unitless), [Ca2+] = 1 μM, sAMPA = 0.01 (unitless), sNMDA = 0.01 (unitless), xNMDA = 0.01 (unitless), sGABA = 0.01 
(unitless).

Then, the network model of 80 neurons was constructed with E:I ratio of 4:1 and bifurcation analysis for network mod-
els was conducted. In the first bifurcation analysis for network models, channel or receptor conductance was gradually 
changed from 10−2 to 102 times its original value by 17 steps (for the bifurcation by the pre-synaptic mechanism, aAMPA
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, axNMDA, aGABA were gradually changed from 10−2 to 101 times its original value by 16 steps) and the simulations were 
conducted for 2.5 s. The membrane potential of all neurons in a network model were analyzed and classified into three 
categories based on the above criteria: “Sleep” (classified into “SWO” or “SWO with high frequency”), “Wake” (classified 
into “AWAKE” or “AWAKE with high frequency”) and “Others” (classified into other categories).

For the evaluation of the degree of synchronization and desynchronization, coefficient of variance (CV) for total spike 
counts per 50 ms (sleep score) was calculated. More than 1,000 parameter sets that bifurcated from wake-like patterns as 
a network (defined by sleep scores <1.0 and the percentage of “Wake” neurons >30%) to wake-like patterns as a network 
(defined by sleep score ≥1.3 and the percentage of “Sleep” neurons >30%) were selected in each bifurcation model. Initial 
values in a network model were randomly assigned for V, h, hNa, nK, hA and mKS

 and other variables were the same as 
those of bifurcation analysis in a single neuron.

We conducted a second bifurcation analysis for the parameter sets collected by the first bifurcation analysis. In the sec-
ond bifurcation analysis, the simulations were conducted for 5 s and the conductance was gradually changed from 10−2 
to 101.5 times its original value by 36 steps (for the bifurcation by the pre-synaptic mechanism, aAMPA, axNMDA, aGABA were 
gradually changed from 10−2 to 100.8 times its original value by 29 steps). The results were analyzed in the same way as 
the first bifurcation analysis and manually checked. The parameter sets including a stable sleep-like and wake-like firing 
patterns as a network with those mean firing rates that were close to each other (the difference is less than 2.0 Hz, called 
a representative sleep-like and wake-like state respectively) were selected.

We also constructed network models with different connection patterns because real connections of cortical networks 
are non-random lognormal-like connections [78]. The network models had different SDs and means of the lognormal 
distributions for the number of synapses per neuron from the original model (S10A and S10D Fig). Parameter sets that 
showed transitions from wake-like to sleep-like firing patterns after the first bifurcation analysis were selected. In the 
second bifurcation analysis, the ranges of the conductance or coefficient were from 10(−0.7) to 10(sv+0.7) times its original 
value by (sv – wv + 1.4) × 10 steps (wv and sv were the values for the representative sleep-like and wake-like states as a 
network in the original model, respectively).

Parameter search for synaptic learning rules in Hodgkin–Huxley-based network models

After the second bifurcation analysis, we analytically calculated the synaptic changes and searched for parameter sets 
representing specific learning rules in the same way as simple models. When using learning rules in network models, the 
equation (Eq. 4) was replaced by the following equation.

 ICa_NMDA = gNMDAsNMDA (Vpost – VCa) 

In details, we selected a 4-s time series data for membrane potentials of a single neuron in a network model during 
wake-like states and duplicated the data with a short delay in each time lag (S6 Fig). Parameter sets for synaptic learning 
rules were randomly generated and the periods that post-synaptic Ca2+ exceeded θp or θd in 3 s (from one to four sec-
onds) were calculated respectively. Then, the periods spent above each threshold were multiplied by 20 to obtain the total 
values for 60 s for the purpose of speeding up the calculations, considering that the results would not change so much if 
time series data for membrane potentials were stable. Therefore, we selected time series data for membrane potentials 
of a representative neuron that had the minimum CV for firing rates in 1-s non-overlapping windows. Synaptic changes 
in each time lag were analytically calculated and the parameter sets of which the SSE between analytical results and the 
Gaussian fitting curves was less than 0.6 were selected. The ranges of θp and θd were limited to [0.8, 1.6] and [0.5, 1.0] 
when searching STDP and limited to [0.5, 1.0] and [0.8, 1.6] when searching Anti-STDP, respectively. The ranges of other 
parameters are shown in S2 Table. The same parameter sets for synaptic learning rules were applied to all excitatory 
synapses in a network model.
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Comparison of synaptic efficacy between sleep-like and wake-like firing patterns in Hodgkin–Huxley-based 
network models

A representative synaptic learning rule was obtained in each network model (see “Materials and methods, Parameter 
search for synaptic learning rules in Hodgkin–Huxley-based network models”). Time changes in synaptic efficacy were 
calculated for 60 s in each of wake-like and sleep-like patterns under specific learning rules in Fig 3. Scaling parameters 
(βNMDA and βVGCC) and normalized thresholds for learning rules (θp and θd) were calculated by preliminary simulations 
(see “Materials and methods, Obtaining values for scaling parameters and normalization of thresholds for synaptic learn-
ing rules”). The mean and CV of synaptic efficacy of excitatory neurons were calculated by every time step except for the 
initial 10 s and compared between sleep-like and wake-like patterns as an average over time. In this process, the network 
models with large differences of mean firing rates between sleep-like and wake-like patterns (>2.0 Hz) were excluded 
from the statistical analysis. Because the AMPAR activity in synapses reflects synaptic strength [79], the conductance of 
AMPAR was updated by synaptic efficacy (ρ).

 gAMPA = gAMPA_min + ρ (gAMPA_max – gAMPA_min) (11)

 gAMPA_min = gAMPA_original × 0.5 (12)

 gAMPA_max = gAMPA_original × 1.5 (13)

Calculation of synaptic efficacy under synaptic learning rules in Hodgkin–Huxley-based network models with 
sleep–wake dynamics

The equations of the two variable model for sleep–wake dynamics are based on the previous study [76].

 
τr
dr
dt

= –r(t) + R∞

(
wr(t) + α

[
Ca2+

]
– ba(t) + I+ ξ

)
 (14)

 R∞(x) = 1/ [1 + exp(–cx)] (15)

 
τa
da
dt

= –a(t) + A∞

(
r(t) – β

[
Ca2+

]
– d

)
 (16)

 A∞(x) = 1/ [1 + exp(–ex)] (17)

 dξ = –θξdt+ ε
√
2θdtWt (18)

 gNMDA = gNMDA_original ×Max_rate×
{
a(t)or r(t)

}
 (19)

r and a are the ratio of the first or second phosphorylated CaMKII. w  is a coefficient of autoactivation and α is a coefficient of 
Ca2+ activation for the first phosphorylated state of CaMKII. b is a coefficient of inhibition by the second phosphorylated CaM-
KII and β is a coefficient of Ca2+ inhibition for a. I is a constant input and ξ  is an input noise calculated by a Weiner process 
Wt , time scale θ, and standard deviation ε. r and a approach their steady-state values defined by R∞(x) and A∞(x), respec-
tively. c, d, and e are coefficients for R∞(x) and A∞(x). The conductance of NMDAR is updated by the value of r and a. We 
constructed the network of 80 neurons as in Fig 3 including synaptic learning rules and sleep–wake dynamics and calculated 
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the time change of r and a. Network models analyzed in Fig 3B–3F and with continuous transitions from wake-like patterns 
to sleep-like patterns were selected. For the model of sleep–wake dynamics bifurcated by the pre-synaptic mechanism, we 
assumed that the pre-synaptic Ca2+ ([Ca2+pre]) is mediated by VGCC and it was expressed by the following equations.

 [Ca2+pre] = –αCaAICa_preβVGCC) (20)

 ICa_pre = gcam2
Ca∞ (Vpre) (Vpre – VCa) (21)

[Ca2+] in the equations (Eq. 14 and 16) was updated by Ca2+ in post-synaptic, intracellular or pre-synaptic compart-
ments in the bifurcation model of the post-synaptic, intracellular or pre-synaptic mechanism, respectively. Sleep scores 
were calculated for 5-s windows and moving averages of them were computed on 10 consecutive values, which were 
classified into sleep-like and wake-like periods if sleep score was more than or less than the threshold, respectively 
(threshold is the value of sleep score when p < 0.01, see “Materials and methods, Evaluation of synchronization and 
desynchronization in Hodgkin–Huxley-based network models”).

Then, we calculated Process S as following equations proposed by a previous study [80].

 
St+1 = UA – (UA – St) exp

(
–
dt
τi

)
(wake state)

 (22)

 
St+1 = LA+ (St – LA) exp

(
–
dt
τd

)
(sleep state)

 (23)

where St is the values of Process S, UA and LA are upper and lower asymptote, respectively. τi and τd  are the time con-
stant of the increasing and decreasing exponential saturating function, respectively.

We selected the models in which periods of sleep-like and wake-like states were close to each other (0.7 ≤ total sleep 
time/total wake time < 1.3) and Pearson’s correlation coefficient between r or a and Process S was the largest. Scaling 
parameters (βNMDA and βVGCC) and normalized thresholds for learning rules (θp and θd) were calculated by preliminary sim-
ulations (see “Materials and methods, Obtaining values for scaling parameters and normalization of thresholds for synaptic 
learning rules”). The simulations were conducted for 300 or 500 s. The mean and CV of synaptic efficacy of all neurons were 
calculated by every time step during the periods of sleep-like and wake-like states and compared as an average over time.

Obtaining values for scaling parameters and normalization of thresholds for synaptic learning rules

Values for scaling parameters (βNMDA and βVGCC) were calculated when we compare synaptic efficacy between sleep-
like and wake-like firing patterns in Hodgkin–Huxley-based network models according to the following procedures. βNMDA
was set to be 1.0 andβVGCC was obtained by satisfying 2MCpre = MCpost  based on the results of preliminary simulations 
as conducted in simple model. MCpre and MCpost were the mean amplitudes of Cpre and Cpost

 in a 10-s simulation of wake-
like patterns respectively, which were implemented in βNMDA = βVGCC = 1.0 and without learning rules (In the model with 
sleep–wake dynamics, MCpre and MCpost were the mean amplitudes of Cpre and Cpost

 during wake-like periods in simulations 
for 150 s in S11, S13 and S14 Figs or 250 s in Figs 4 and S12). θp and θdof synaptic learning rules were normalized by 
MCpre during wake-like patterns as the following equation.

 
θ′x =

θx ×MCpre

0.7
(x = p or d)
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Evaluation of synchronization and desynchronization in Hodgkin–Huxley-based network models

For the evaluation of the degree of synchronization and desynchronization, CV for total spike counts per 50-ms window 
without overlaps was calculated (Sleep score). Sleep scores were obtained from the waveforms of membrane potentials 
in all neurons for 2.5 s or 5.0 s in the first and second bifurcation analysis, respectively (Fig 3B–3F). In simulations with 
sleep–wake dynamics (Fig 4C–4F), sleep scores were calculated continuously in 5-s window with 500-ms overlaps. For 
the statistical tests, 1,000,000 sets of desynchronized spike trains for 2.5 s or 5 s (80 neurons, step size is 0.01) with the 
frequency of 0.5–15 Hz were randomly generated as the same way as in Fig 1G and 1H and sleep scores were calculated 
in each dataset. A sleep score of the data was compared with this distribution and regarded as sleep-like states if it was 
more than the value with p < 0.01. The distribution of sleep scores in generated desynchronized spike trains and sleep 
scores with p < 0.01 in different conditions are shown in S20 Fig.

Calculation of synaptic efficacy under synaptic learning rules in Hodgkin–Huxley-based network models 
including stimulation during the wakefulness

The construction of the network model was the same as Figs 3 and 4. In S15 Fig, excitatory neurons were divided 
into three groups by their indices: group 1 and 2 (20 neurons in each group) are the groups for stimulated neurons 
and group 3 (24 neurons) is for unstimulated neurons. First, all neurons fire with desynchronized wake-like firing 
patterns. Then, neurons in group 1 and 2 were stimulated simultaneously at the end of wake-like states. The stimula-
tion was optimized by changing its waveforms and rates so that the potentiation of synaptic efficacy between stim-
ulated groups are observed under STDP during the stimulation protocol. After the stimulation, all neurons fire with 
synchronized sleep-like firing patterns. Mean of synaptic efficacy every time step and ratio of mean synaptic efficacy 
after to before sleep-like firing patterns were calculated and compared between stimulated neurons and unstimulated 
neurons.

Statistical analysis

We applied a Student t test in Figs 3E, 3F, S8, S9, S10B, S10C, S10E, S10F, S11, S16B and S16C. In Figs 1H, 2A–2C, 
5, S2, S3, S16A, and S19, Bayesian statistics was applied to test the difference in mean synaptic efficacy and synaptic 
CV between two groups that follow normal distributions because the frequentist statistical tests with a large number of 
simulated results are likely to be significant. The analysis was performed according to the following steps:  Non-informative 
priors were set for each group’s mean and standard deviation and the likelihood for the observed data was defined. A 
parameter representing the difference in averages (diff = mu

1
 − mu

2
) (mu

1
 and mu

2
 is a mean in each group) was defined. 

Then, Markov Chain Monte Carlo method was used to sample from the posterior distribution. All posterior distributions 
were derived from 5,000 MCMC samples after 2,000 burn-in iterations. The sampling results were examined using 95% 
credible interval (95% CI) to evaluate whether there is a significant difference between the two groups (i.e., whether zero 
was contained within the interval).

Software and numerical calculations

We used Python (version 3.8) with these following libraries: jupyter, matplotlib, numpy, pandas, scikit-learn, statannot, 
numba, seaborn, scipy, vistats, pymc, and arviz. All simulations were conducted using GPGPU (NVIDIA RTX 3,090, 
A5000 or A6000), C++17 and CUDA (version 12.0) except the simulations of parameter search for synaptic learning 
rules or parameter search for SWO and bifurcation analysis in a single neuron. Calculations were implemented by using 
a fourth-order Runge-Kutta method. Time steps were 0.1 ms in parameter search for synaptic learning rules, 0.05 ms in 
calculations of synaptic efficacy in simple model, and 0.00005–0.05 ms in calculations of synaptic efficacy in Hodgkin–
Huxley-based network models, respectively.
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Supporting information

S1 Fig.  Distributions of parameter sets for synaptic learning rules in different fitting curves, related to Fig 1. 
Distributions for parameter sets for four types of synaptic learning rules obtained by different fitting curves. A total of 1,000 
parameter sets whose sum of squared errors (SSE) between the analytical result and fitted Gaussian curves was less 
than thresholds were selected. The threshold was 0.45 in alr  = 0.9, τlr  = 50 (E) or 0.25 in other conditions (A–D). (A) The 
original one. The plots in axes of thresholds and amplitudes were the same as in Fig 1F. (B–E) Parameter sets were col-
lected by fitting to gaussian curves with different amplitudes (alr) and time constants (τlr ) from original one. The ranges of 
parameters are shown in S2 Table.
(TIF)

S2 Fig.  Mean synaptic efficacy at higher mean firing rates, related to Fig 1. Box plots for mean synaptic efficacy 
under four different types of synaptic learning rules at higher mean firing rates (n = 1,000 for each firing rate, n represents 
the number of synaptic learning rules). The parameter sets for synaptic learning rules were the same as in Fig 1H. The 
sleep-like firing patterns were generated by sampling from the lognormal distributions for Up-state duration and Down-
state duration (log

10
 (mean Up-state duration) = 2.7 and log

10
 (mean Down-state duration) = 2.7, SD was calculated 

according to the linear regression analysis based on in vivo data (S18 Fig)). Initial synaptic efficacies in all the synapses 
were 0.5 and synaptic efficacies were simulated for 6 min. Synaptic efficacies for the last 2 min were averaged and 
compared between sleep-like and wake-like firing patterns. The whiskers above and below of box plots show minimal to 
maximal values. The box extends from the 25th to the 75th percentile and the middle line indicates the median. Bayes-
ian statistical analysis was performed using Markov Chain Monte Carlo method to infer posterior distributions of average 
differences in mean synaptic efficacy between sleep-like firing patterns and wake-like firing patterns. Asterisks (*) indicate 
95% CIs do not include zero. The data underlying the graphs shown in the figure can be found in Table A in S2 Data. The 
95% CIs for the distributions of average differences are shown in Table F in S3 Data.
(TIF)

S3 Fig.  Mean synaptic efficacy in different fitting curves, related to Fig 2. (A–C) Box plots for mean synaptic efficacy 
under synaptic learning rules in different parameters for fitting curves (n = 1,000 for each firing rate, n represents the num-
ber of synaptic learning rules). The results of alr = 0.7, τlr = 30 (A), alr = 0.5, τlr = 50 (B), and alr = 0.9, τlr = 50 (C) are 
shown. The parameter sets for synaptic learning rules were the same as in S1 Fig. The sleep-like firing patterns were the 
same as in Fig 1H. Initial synaptic efficacies in all the synapses were 0.5 and synaptic efficacies were simulated for 6 min. 
Synaptic efficacies for the last 2 min were averaged and compared between sleep-like and wake-like firing patterns. The 
whiskers above and below of box plots show minimal to maximal values. The box extends from the 25th to the 75th per-
centile and the middle line indicates the median. Bayesian statistical analysis was performed using Markov Chain Monte 
Carlo method to infer posterior distributions of average differences in mean synaptic efficacy between sleep-like firing 
patterns and wake-like firing patterns. Asterisks (*) indicate 95% CIs do not include zero. The data underlying the graphs 
shown in the figure can be found in Tables B–D in S2 Data. The 95% CIs for the distributions of average differences are 
shown in Tables G-I S3 Data.
(TIF)

S4 Fig.  Results of parameter search for SWO and bifurcation analysis, related to Fig 3. (A–F) The results of param-
eter search for SWO and bifurcation analysis in single and multiple neurons of the Hodgkin–Huxley-based model is shown 
by three types of bifurcation models. The longitudinal axes represent the number of total parameter sets searched (A), the 
percentage of parameter sets generating SWO (B), the percentage of parameter sets bifurcating from wake-like to sleep-
like firing patterns in a single neuron (bifurcation (single neuron)) (C), the percentage of parameter sets bifurcating from 
wake-like to sleep-like firing patterns as a network (bifurcation (network)) (D), ratio of bifurcation (single neuron) to SWO 
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(E), ratio of bifurcation (network) to bifurcation (single neuron) (F). The data underlying the graphs shown in the figure can 
be found in Table E in S2 Data.
(TIF)

S5 Fig.  Clustering of the results of bifurcation analysis, related to Fig 3. Principal component analysis (PCA) was 
conducted for the parameter sets that bifurcated form sleep-like to wake-like firing patterns as a network obtained in 
bifurcation analysis in each Hodgkin–Huxley-based network model. (A) Cumulative contribution ratio of eigen values when 
PCA applied to the parameter sets. (B) Projection of the parameter sets onto their first two principal components in each 
model (n = 1,344, 1,202, and 1,092 in the post-synaptic, intracellular and pre-synaptic bifurcation models, respectively).
(TIF)

S6 Fig.  Procedures of searching parameter sets for synaptic learning rules in Hodgkin–Huxley-based network 
model, related to Fig 3. The details are shown in “Materials and methods, Parameter search for synaptic learning rules 
in Hodgkin–Huxley-based network models”. A 4-s time series data for membrane potentials of a single neuron in a net-
work model during wake-like states were selected and duplicated with a short delay in each time lag. Parameter sets for 
synaptic learning rules were randomly generated and the periods that post-synaptic Ca2+ exceeded θp or θd in 3 s (from 
one to four seconds) were calculated respectively. Then, the periods spent above each threshold were multiplied by 20 to 
obtain the total values for 60 s for the purpose of speeding up the calculations. Synaptic changes in each time lag were 
analytically calculated and the parameter sets of which the SSE between analytical results and the Gaussian fitting curves 
was less than 0.6 were selected.
(TIF)

S7 Fig.  Time changes in membrane potential and synaptic efficacy of a representative network model under 
STDP, related to Fig 3. (A–E) Time changes in membrane potential and synaptic efficacy were calculated in a represen-
tative intracellular bifurcation model. The structure and parameter set for the channel and receptor conductance of net-
work model was the same as in Fig 3C and the parameter set for STDP learning rule is shown in S8 Table. Initial synaptic 
efficacies of all synapses were 0.5. Simulations were conducted for 60 s. Time changes in membrane potential during 
wake-like patterns (A), membrane potential in sleep-like patterns (B), synaptic efficacy of a representative synapse (C), 
mean synaptic efficacy (D), and CV of synaptic efficacy (E) are shown. Right figures show enlarged graphs for red rectan-
gles of left figures.
(TIF)

S8 Fig.  Mean synaptic efficacy in Hodgkin–Huxley-based network models under Hebbian and Anti-Hebbian, related to 
Fig 3. (A, B) Box plots for mean synaptic efficacy in sleep-like and wake-like firing patterns under Hebbian (A) and Anti-Hebbian 
(B) by three types of network models (n = 192, 42 and 151 for Hebbian and n = 143, 38 and 123 for  Anti-Hebbian in post- 
synaptic, intracellular, and pre-synaptic bifurcation models respectively, n represents the number of parameter sets for the net-
work models). The structure and parameter set for channel or receptor conductance of network models were the same as in Fig 
3E and 3F. A parameter set for the synaptic learning rule was assigned to each network model. Synaptic efficacy was compared 
assuming the almost close firing rates between sleep-like and wake-like states. Initial synaptic efficacies of all synapses were 
0.5. Simulations were conducted for 60 s and synaptic efficacy and CV were averaged over the period from 10 to 60 s. The 
whiskers above and below of box plots show minimal to maximal values. The box extends from the 25th to the 75th percentile 
and the middle line indicates the median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student t test was applied. The 
data underlying the graphs shown in the figure can be found in Table F in S2 Data.
(TIF)

S9 Fig.  Mean synaptic efficacy between sleep-like and wake-like firing patterns at different mean firing rates 
in Hodgkin–Huxley-based network models, related to Fig 3. (A, B) Mean (A) and CV (B) of synaptic efficacy in the 
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post-synaptic bifurcation models under STDP were compared between sleep-like and wake-like firing patterns by differ-
ent mean firing rates. The results of simulations for models bifurcated by the post-synaptic mechanism in Fig 3E were 
classified into three groups (0–4 Hz, 4–8 Hz and 8–12 Hz) by mean firing rates during wake-like firing patterns (n = 35, 
106 and 29 for each firing rate group, n represents the number of parameter sets for the network models). The box 
extends from the 25th to the 75th percentile and the middle line indicates the median. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, Student t test was applied. The data underlying the graphs shown in the figure can be found in Tables G 
and H in S2 Data.
(TIF)

S10 Fig.  Synaptic changes under STDP and Anti-STDP in Hodgkin–Huxley-based network models with different 
connections, related to Fig 3. (A) Schematic illustration and histogram for lognormal distributions of the number of syn-
apses per neuron in different SDs. (B, C) Box plots for mean synaptic efficacy during sleep-like and wake-like firing pat-
terns under STDP (n = 191, 74, 46, 43, n = 52, 34, 26, 25, and n = 150, 83, 56, 48 for each value of SD in post-synaptic, 
intracellular and pre-synaptic bifurcation models, respectively) (B) and Anti-STDP (n = 121, 82, 57, 49, n = 36, 34, 34, 31, 
and n = 119, 90, 61, 58 for each value of SD in post-synaptic, intracellular and pre-synaptic bifurcation models, respec-
tively) (C) in different SDs for lognormal distributions. (D) Schematic illustration and histogram for lognormal distributions 
of the number of synapses per neuron in different means. (E, F) Box plots for mean synaptic efficacy during sleep-like 
and wake-like firing patterns under STDP (n = 89, 191, 85, 83, n = 36, 52, 34, 34, and n = 99, 150, 90, 88 for each value 
of mean in post-synaptic, intracellular and pre-synaptic bifurcation models, respectively) (E) and Anti-STDP (n = 83, 121, 
85, 77, n = 36, 36, 35, 38, and n = 101, 119, 93, 91 for each value of mean in post-synaptic, intracellular and pre-synaptic 
bifurcation models, respectively.) (F) in different means for lognormal distributions. (B, C, E, F) A parameter set for the 
synaptic learning rule was assigned to each network model. Synaptic efficacy was compared assuming the almost close 
firing rates between sleep-like and wake-like states. Initial synaptic efficacies of all synapses were 0.5. Simulations were 
conducted for 60 s and synaptic efficacy and CV were averaged over the period from 10 to 60 s. The whiskers above and 
below of box plots show minimal to maximal values. The box extends from the 25th to the 75th percentile and the middle 
line indicates the median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student t test was applied. The parameter 
sets for channel and receptor conductance of network models and synaptic learning rules were the same as in Fig 3E and 
3F. n represents the number of parameter sets for the network models. The data underlying the graphs shown in the figure 
can be found in Tables I and J in S2 Data.
(TIF)

S11 Fig.  Analysis in multiple parameter sets for Hodgkin–Huxley-based network models bifurcated by the 
post-synaptic mechanism under STDP or Anti-STDP with sleep–wake dynamics, related to Fig 4. (A) Pearson’s 
correlation coefficients were calculated in combinations of r and a with multiple parameter sets for Hodgkin–Huxley-based 
network models. NMDAR conductance was updated by r or a and parameters for sleep–wake dynamics were optimized 
by Pearson’s correlation coefficients between Process S and r or a (For example, r-a means that conductance was 
updated by r and parameters for sleep–wake dynamics were optimized by Pearson’s correlation coefficients between 
Process S and a). The network structures and initial values for variables (a, r and ξ) were the same as in Fig 4. Initial 
synaptic efficacies of all synapses were 0.5 and the simulations were conducted for 300 s. n = 14, 14, 15, and 15 for r–r, 
r–a, a–r, and a–a pair, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student t test was applied. The 
data underlying the graphs shown in the figure can be found in Table K in S2 Data. (B, C) Box plots for mean and CV of 
synaptic efficacy during sleep-like and wake-like periods in multiple parameter sets for network models with sleep–wake 
dynamics under STDP (n = 27) (B) and Anti-STDP (n = 12) (C). Initial values for variables (a, r and ξ) were the same as in 
the representative models in Fig 4. Initial synaptic efficacies of all synapses were 0.5 and the simulations were conducted 
for 300 s. NMDAR conductance was updated by a and optimized by Pearson’s correlation coefficients between Process S 
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and r. The whiskers above and below of box plots show minimal to maximal values. The box extends from the 25th to the 
75th percentile and the middle line indicates the median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student t test 
was applied. The data underlying the graphs shown in the figure can be found in Tables L and M in S2 Data.
(TIF)

S12 Fig.  Representative models with sleep–wake dynamics under STDP and Anti-STDP in the intracellular 
bifurcation model, related to Fig 4. VGCC conductance was updated by a and parameters for the sleep–wake dynam-
ics model were optimized by Pearson’s correlation coefficient between Process S and r. Initial synaptic efficacies of all 
synapses were 0.5. The simulations were started from a sleep-like state and conducted for 500 s. The network structure 
was the same as in Fig 4B. The parameter set for channel or receptor conductance of network models, synaptic learning 
rules and sleep–wake dynamics and initial values for variables in a representative model are shown in S5–S8 Tables. 
(A) Schematic illustration of the model for sleep–wake dynamics in the intracellular bifurcation mechanism. Ca2+ in a cell 
body activates the initial state of CaMKII represented by r. (B, C) Time changes in membrane potential of a neuron and 
post-synaptic Ca2+, synaptic efficacy and ratio of two phosphorylated states of kinases (r and a) of a synapse in repre-
sentative network models under STDP (B) and Anti-STDP (C). The results from 200 to 500 s are shown. (D, E) Raster 
plots and time changes in mean synaptic efficacy, sleep score and Process S in representative network models under 
STDP (D) and Anti-STDP (E). The shadow in time changes in mean synaptic efficacy represents SD. The network was 
considered to be in the sleep-like or wake-like states if the sleep score was above or below the threshold, respectively 
(the threshold is the value of sleep score where p = 0.01, see “Materials and methods, Evaluation of synchronization and 
desynchronization in Hodgkin–Huxley-based network models”). The results of 200–500 s are shown. (F, G) Mean and CV 
of synaptic efficacy during the periods of sleep-like and wake-like states in representative network models under STDP (F) 
and Anti-STDP (G). The data underlying the graphs shown in the figure can be found in Table N in S2 Data.
(TIF)

S13 Fig.  Representative models with sleep–wake dynamics under STDP and Anti-STDP learning rules in the 
pre-synaptic bifurcation model, related to Fig 4. Coefficients for pre-synaptic activations were updated by a and param-
eters for the sleep–wake dynamics model were optimized by Pearson’s correlation coefficient between Process S and 
r. Initial synaptic efficacies of all synapses were 0.5. The simulations were started from a wake-like state and conducted 
for 300 s. The network structure was the same as in Fig 4B. The parameter set for channel or receptor conductance of 
network models, synaptic learning rules and sleep–wake dynamics and initial values for variables in a representative 
model are shown in S5–S8 Tables. (A) Schematic illustration of the model for sleep–wake dynamics in the intracellular 
bifurcation mechanism. Ca2+ in a pre-synaptic neuron activates the initial state of CaMKII represented by r. (B, C) Time 
changes in membrane potential of a neuron and post-synaptic Ca2+, synaptic efficacy and ratio of two phosphorylated 
states of kinases (r and a) of a synapse in representative network models under STDP (B) and Anti-STDP (C). (D, E) 
Raster plots and time changes in mean synaptic efficacy, sleep score and Process S in representative network models 
under STDP (D) and Anti-STDP (E). The shadow in time changes in mean synaptic efficacy represents SD. The network 
was considered to be in the sleep-like or wake-like states if the sleep score was above or below the threshold, respec-
tively (the threshold is the value of sleep score where p = 0.01, see “Materials and methods, Evaluation of synchronization 
and desynchronization in Hodgkin–Huxley-based network models”). (F, G) Mean and CV of synaptic efficacy during the 
periods of sleep-like and wake-like states in representative network models under STDP (F) and Anti-STDP (G). The data 
underlying the graphs shown in the figure can be found in Table O in S2 Data.
(TIF)

S14 Fig.  Sleep–wake dynamics in the bistable regime, related to Fig 4. The model for sleep–wake dynamics can rep-
resent multiple regimes. In the oscillatory regime (Fig 4), activity alternates between sleep-like and wake-like states. In the 
bistable regime, although sleep-like and wake-like states are relatively stable, sufficiently large noises induces alternations 
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between two states, resulting in variable durations of two states. Synaptic efficacy was calculated in a representative net-
work model bifurcated by the post-synaptic mechanism with sleep–wake dynamics and STDP learning rule in the bistable 
regime. The conductance of NMDAR was updated by a and the simulations were optimized by Pearson’s correlation coef-
ficients between Process S and r. Initial synaptic efficacies of all synapses were 0.5. The simulations were started from a 
wake-like state and conducted for 300 s. The network structure was the same as in Fig 4B. The parameter set for chan-
nel or receptor conductance of network models, synaptic learning rules and sleep–wake dynamics and initial values for 
variables in a representative model are shown in S5–S8 Tables. (A) Time changes in membrane potentials, post-synaptic 
Ca2+, synaptic efficacy, and ratio of two phosphorylated states of kinases (r and a) in a single neuron of a representative 
network model. (B) Raster plots, time changes in mean synaptic efficacy, sleep score, and Process S in a representative 
network model. The shadow in time changes in mean synaptic efficacy represents SD. The network was considered to be 
in the sleep-like or wake-like states if the sleep score was above or below the threshold, respectively (the threshold is the 
value of sleep score where p = 0.01, see “Materials and methods, Evaluation of synchronization and desynchronization in 
Hodgkin–Huxley-based network models”). (C) Mean and CV of synaptic efficacy during sleep-like and wake-like periods in 
a representative network model. The data underlying the graphs shown in the figure can be found in Table P in S2 Data. 
(D) The results of simulations without noise. Simulations were conducted in θ = 0 and ξ = 0 (the initial value for ξ  is also 
0) while other parameters were the same as in simulations with noise. The upper graph shows the time change in sleep 
scores in the simulation starting from wake-like firing patterns and the lower graph shows the time change in sleep scores 
starting from the sleep-like firing patterns.
(TIF)

S15 Fig.  Synaptic changes in Hodgkin–Huxley-based network models with stimulation during wakefulness under 
STDP, related to Fig 5. Synaptic efficacy was calculated in a representative network model bifurcated by the intracellu-
lar mechanism under STDP. Parameter sets for the channel or receptor conductance and the synaptic learning rule are 
shown in S5 and S8 Tables, respectively. The VGCC conductance was multiplied by 10−0.4 and 10−0.1 to its original value 
to generate wake-like and sleep-like firing patterns. Stimulations were applied for 15 s at 20 Hz after wake-like firing 
patterns. The stimulation was optimized by changing its waveforms and rates so that the potentiation of synaptic efficacy 
between stimulated groups were observed (see “Materials and methods, Calculation of synaptic efficacy under synaptic 
learning rules in Hodgkin–Huxley-based network models including stimulation during the wakefulness”). Initial synaptic 
efficacies of all synapses were 0.5. The network structure was the same as in Fig 4B. (A) Schematic illustration for group-
ing excitatory neurons. Group 1 and 2 were stimulated. (B) Time changes in mean synaptic efficacy of stimulated neurons 
and unstimulated neurons. (C) Ratio of mean synaptic efficacy after and before sleep-like firing patterns in stimulated and 
unstimulated neurons. The data underlying the graphs shown in the figure can be found in Table Q in S2 Data.
(TIF)

S16 Fig.  CV of synaptic efficacy under different synaptic learning rules. (A) Box plots for CV of synaptic efficacy 
in sleep-like and wake-like firing patterns by synaptic learning rules and mean firing rates in simple model (n = 1,000 for 
each firing rate, n represents the number of synaptic learning rules). The network structure, firing patterns and parameters 
for synaptic learning rules are the same as in Fig 1H. Initial synaptic efficacies in all the synapses were 0.5 and synaptic 
efficacies were simulated for 6 min. Synaptic efficacies for the last 2 min were averaged and compared between sleep-
like and wake-like firing patterns. The whiskers above and below of box plots show minimal to maximal values. The box 
extends from the 25th to the 75th percentile and the middle line indicates the median. Bayesian statistical analysis was 
performed using Markov Chain Monte Carlo method to infer posterior distributions of average differences in mean synap-
tic efficacy between sleep-like firing patterns and wake-like firing patterns. Asterisks (*) indicate 95% CIs do not include 
zero. The data underlying the graphs shown in the figure can be found in Table R in S2 Data. The 95% CIs for the distribu-
tions of average differences are shown in Table J in S3 Data. (B, C) Box plots for CV of synaptic efficacy during sleep-like 
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and wake-like firing patterns under STDP (B) and Anti-STDP (C) in Hodgkin–Huxley-based network models (n = 191, 
52 and 150 for STDP and n = 121, 36 and 119 for Anti-STDP in post-synaptic, intracellular, and pre-synaptic bifurcation 
models respectively. n represents the number of parameter sets for the network models). The network structure, firing 
patterns and parameters for synaptic learning rules are the same as in Fig 3E and 3F. Synaptic efficacy was compared 
assuming the almost close firing rates between sleep-like and wake-like states. Initial synaptic efficacies of all synapses 
were 0.5. Simulations were conducted for 60 s, and synaptic efficacy and CV were averaged over the period from 10 to 
60 s. The whiskers above and below of box plots show minimal to maximal values. The box extends from the 25th to the 
75th percentile and the middle line indicates the median. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Welch’s t test 
was applied in (A) and Student t test was applied in (B) and (C). The data underlying the graphs shown in the figure can 
be found in Table S in S2 Data.
(TIF)

S17 Fig.  Coefficient of noise and comparison of analytical and simulation results. (A) The sum of squared errors 
(SSE) between analytical solutions and simulation results were calculated in different noise coefficient (a center figure) 
in simple model. All simulations were conducted in step size = 0.1. The simulation results were compared with analytical 
solutions and fitting curves (surrounding figures). The parameter set for STDP learning rule is shown in S8 Table. (B) 
Comparison of analytical and simulation results in parameter search for STDP learning rule in a representative Hodgkin–
Huxley-based network model bifurcated by the post-synaptic mechanism. The parameter set for channel or receptor con-
ductance of network model was the same as in Fig 3C and the parameter set for STDP learning rule is shown in S8 Table. 
The simulation was conducted by step size = 0.1.
(TIF)

S18 Fig.  Distributions of ISI and linear regression analysis for spike trains in vivo data. (A, B) The distribution for 
ISI of the spike-train data for all excitatory neurons (verified by cross-correlogram) in a dataset of a previous article [8,22]. 
Lognormal distributions for ISI in Up states in the state of sleep (A) and wake (B) are shown. The lognormal distributions 
fitted well in the ISI of the state of wake (B). Although mixed lognormal distributions were expected in the ISI of the sleep 
Up states, we assumed a single lognormal distribution in simulations for simplification (A). (C–G) We performed the linear 
regression analysis on the mean and SD of Up-state duration (C), the mean and SD of Down-state duration (D), the mean 
and SD of ISI in the state of wake (E) and in the Up states of sleep (F) and the mean Up-state duration and mean Down-
state duration (G).
(TIF)

S19 Fig.  Mean synaptic efficacy in different membrane potential differences between Up and Down states. (A, B) 
Box plots for mean synaptic efficacy during sleep-like and wake-like firing patterns with 10 mV (A) and 5 mV (B) mem-
brane potential differences are shown (n = 1,000 for each firing rate, n represents the number of synaptic learning rules). 
The parameter sets for STDP and spike trains are the same as in Fig 1H. The parameters for constructing waveforms are 
shown in S3 Table. Initial synaptic efficacies in all the synapses were 0.5 and synaptic efficacies were simulated for 6 min. 
Synaptic efficacies for the last 2 min were averaged and compared between sleep-like and wake-like firing patterns. The 
whiskers above and below of box plots show minimal to maximal values. The box extends from the 25th to the 75th per-
centile and the middle line indicates the median. Bayesian statistical analysis was performed using Markov Chain Monte 
Carlo method to infer posterior distributions of average differences in mean synaptic efficacy between sleep-like firing 
patterns and wake-like firing patterns. Asterisks (*) indicate 95% CIs do not include zero. The data underlying the graphs 
shown in the figure can be found in Tables T and U in S2 Data. The 95% CIs for the distributions of average differences 
are shown in Table K in S3 Data.
(TIF)
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S20 Fig.  Distribution of sleep scores and sleep scores with p < 0.01 in other conditions. (A) Distribution of sleep 
scores in 1,000,000 desynchronized spikes in the condition of 80 neurons, 5 s simulation time and 0.5–15 Hz. Wake-
like desynchronized spikes were sampled from lognormal distributions for ISI (see “Materials and methods, Definition of 
lognormal distributions based on in vivo recordings”). (B–D) sleep scores with p < 0.01 in different simulation times (B), 
ranges of mean firing rates (C) and number of neurons (D). P values were calculated by the distribution of 1,000,000 
desynchronized spikes of each condition. The data underlying the graphs shown in the figure can be found in Table V in 
S2 Data.
(TIF)

S1 Table.  Fixed values in simple model for synaptic learning rules. Values were based on the previous study [23] 
and used in Figs 1, 2, 5, S2, S3, S16A, S17A and S19.
(XLSX)

S2 Table.  Value ranges of parameters for synaptic learning rules. Parameter values were randomly sampled from 
uniform distributions within these ranges of values when searching the parameter sets for synaptic learning rules fitting 
gaussian curves (Figs 1E, 1F, and S1).
(XLSX)

S3 Table.  Parameters for constructing voltage waveforms from spike trains. These are values used in Figs 1, 2, 5, 
S2, S3, S16A, S17A and S19 to construct voltage waveforms from spike trains.
(XLSX)

S4 Table.  Fixed values in the Hodgkin–Huxley-based network model. Values were based on the previous study [23] 
and used in simulations of Hodgkin–Huxley-based network models.
(XLSX)

S5 Table.  The representative parameter sets for Hodgkin–Huxley-based network models. These parameter sets 
were used in the network models by three types of bifurcations in Figs 3C and 4, S7, and S12–S17.
(XLSX)

S6 Table.  The representative parameter sets for sleep–wake dynamics S7 Table. Initial values in the representative 
models with sleep–wake dynamics. These parameter sets were used in simulations of the Hodgkin–Huxley-based network 
models with sleep–wake dynamics in Figs 4 and S12–S14.
(XLSX)

S7 Table.  Initial values in the representative models with sleep–wake dynamics. The initial values for channel or 
receptor conductance, or a coefficient of pre-synaptic activation and variables of sleep–wake dynamics were as follows.
(XLSX)

S8 Table.  The representative parameter sets for synaptic learning rules. 
(XLSX)

S1 Data.  The data underlying the graphs shown in Figs 1–5. 
(XLSX)

S2 Data.  The data underlying the graphs shown in S2–S4, S8–S16, S19, and S20 Figs. 
(XLSX)

S3 Data.  The 95% credible intervals for distributions of average differences between sleep-like and wake-like 
firing patterns calculated by Bayesian statistical analysis in Figs 1H, 2A–2C, 5, S2, S3, S16A, and S19. (XLSX)
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